001026467 001__ 1026467
001026467 005__ 20241209210459.0
001026467 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03411
001026467 0247_ $$2URN$$aurn:nbn:de:0001-20241209125135062-9549579-4
001026467 020__ $$a978-3-95806-755-4
001026467 037__ $$aFZJ-2024-03411
001026467 041__ $$aEnglish
001026467 1001_ $$0P:(DE-Juel1)176997$$aMehta, Vrinda$$b0$$eCorresponding author$$ufzj
001026467 245__ $$aQuantum annealing and its variants: Application to quadratic unconstrained binary optimization$$f- 2023-11-06
001026467 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001026467 300__ $$aiii, 152
001026467 3367_ $$2DataCite$$aOutput Types/Dissertation
001026467 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001026467 3367_ $$2ORCID$$aDISSERTATION
001026467 3367_ $$2BibTeX$$aPHDTHESIS
001026467 3367_ $$02$$2EndNote$$aThesis
001026467 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1717750915_3801
001026467 3367_ $$2DRIVER$$adoctoralThesis
001026467 4900_ $$aSchriften des Forschungszentrums Jülich IAS Series$$v59
001026467 502__ $$aDissertation, RWTH Aachen University, 2023$$bDissertation$$cRWTH Aachen University$$d2023
001026467 520__ $$aIn this thesis, we study the performance of the numerical implementation of quantum annealing, as well as of physical quantum annealing systems from D-Wave Quantum Systems Inc., for solving 2-Satisfiability (2-SAT) and other quadratic unconstrained binaryoptimization (QUBO) problems. For gauging the suitability of quantum annealing for solving these problems, we use three main metrics: the probability of the algorithm to solve the problem, its ability to find all the solutions to the problem if the problem has more than one solution, and the scaling of the time to solution as a function of the problem size. In doing so, we compare the performance of the numerically simulated ideal quantum annealing with its actual physical realization. We find that the ideal, standard quantum annealing algorithm can solve the sets of 2-SAT problems considered in this work, even if with a low success probability for hard problems, and can sample the degenerate ground states of the 2-SAT problems with multiple satisfying assignments in accordance with perturbation theory. However, in the long annealing time limit, the ideal standard annealing algorithm leads to a scaling of the time to solution that is worse compared to even the simple enumeration of all the possible states. On the other hand, we find noise and temperature effects to play an active role in the evolution of the state of the system on the D-Wave quantum annealers. These systems can solve a majority of the studied problems with a relatively large success probability, and the scaling of the time to solution, though still growing exponentially in the system size, is significantly improved. Next, by means of simulations, we introduce two modifications in the standard quantum annealing algorithm, and gauge the performance of the modified algorithms. These modifications are the addition of a trigger Hamiltonian to the standard quantum annealing Hamiltonian, or a change in the initial Hamiltonian of the annealing Hamiltonian. We choose the trigger Hamiltonian to have either ferromagnetic or antiferromagnetic transverse couplings, while the additional higher-order couplings added to the typically chosen initial Hamiltonian are ferromagnetic. We find that these modifications can lead to significant improvements in the performance of the annealing algorithm, even if the scaling behavior is still exponential.
001026467 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026467 8564_ $$uhttps://juser.fz-juelich.de/record/1026467/files/IAS_Series_59.pdf$$yOpenAccess
001026467 8564_ $$uhttps://juser.fz-juelich.de/record/1026467/files/IAS_Series_59.gif?subformat=icon$$xicon$$yOpenAccess
001026467 8564_ $$uhttps://juser.fz-juelich.de/record/1026467/files/IAS_Series_59.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026467 8564_ $$uhttps://juser.fz-juelich.de/record/1026467/files/IAS_Series_59.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026467 8564_ $$uhttps://juser.fz-juelich.de/record/1026467/files/IAS_Series_59.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026467 909CO $$ooai:juser.fz-juelich.de:1026467$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
001026467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026467 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026467 9141_ $$y2024
001026467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b0$$kFZJ
001026467 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026467 920__ $$lyes
001026467 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001026467 980__ $$aphd
001026467 980__ $$aVDB
001026467 980__ $$aUNRESTRICTED
001026467 980__ $$abook
001026467 980__ $$aI:(DE-Juel1)JSC-20090406
001026467 9801_ $$aFullTexts