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In this paper we present a scalable approach based on the latency-based linear multistep compound method to
use graphic processing unit (GPU) to accelerate the power system simulations with electromagnetic transients.

To balance between the computational load and accuracy, we modeled the power system using shifted
frequency analysis. Then, to efficiently exploit the hardware, our computational approach is designed to utilize
both data-parallel and task-parallel execution. In addition, a graph-based thread safety design is introduced

to achieve high scalability in the paralleled component computations. Furthermore, our implementation
introduces a translation layer for different heterogeneous computing frameworks during compile time, so that
a wide range of GPU devices can be supported without losing performance. Finally, benchmark results show
that our approach achieves faster-than-real-time capability for systems with hundreds to thousands of nodes.

1. Introduction

The 2050-carbon-neutral goal has sparked increasing installation of
renewables, leading to a growing number of power electronic devices
in electric power systems. As a result, the required simulation time
step to get accurate results is decreased; at the same time, the problem
size has also grown, posing high challenge to the traditional simulation
techniques.

To balance between increasing computational load and require-
ments on accuracy, the shifted-frequency analysis (SFA), has been
studied and becoming an accepted solution [1,2].

Besides new modeling techniques, in the past few decades, sev-
eral parallel simulation methods have been proposed to overcome the
computational challenge of simulating modern power systems. These
methods can be roughly categorized into explicit and automatic paral-
lelization methods [3]. The former includes transmission line modeling
(TLM) [4], diakoptics [5], waveform relaxation (WR) [6], etc., and
the latter including fine-grained methods like [7], and coarse-grained
methods such as the combined state-space nodal method (SSNA) [8]
and latency-based linear multistep compound (LB-LMC) [9]. A sys-
tematic comparison of different parallel methods can be found in [3,
10].

Since parallel hardware is needed to efficiently execute the parallel
algorithms, GPU has gaining attention in the recent years due to its

capability for massively parallel execution and fast memory access [7,
11-14]. Among then, [7] uses fine-grained parallelization methods,
which decomposes the equations of the power system into linear and
nonlinear part and uses GPU to solve the decomposed linear sys-
tem with direct method, and non-linear system with Newton-Raphson
method, in a parallel way. This design can efficiently achieve data-
parallelism within the linear and non-linear solver kernels. Similarly,
in [13], a fine-grained method is applied to simulate power electronic
systems where the integration of each state variable is computed in
parallel. However, the algorithm, as many EMT and transient stability
simulation approaches, requires updating the LU factorizations at each
time step. This is avoided in the parallelization method [9] employed in
this work so to improve scalability. The approaches shown in [11,14]
design dedicated kernels for the different type of components consid-
ered, those approaches share a similar approach to the one presented
in this paper. [11] is one of the earliest example of using GPU for
transient stability simulation and had highlighted the potential of using
GPU to accelerate dynamic simulations. [14] utilizes CUDA’s dynamic
parallelism, thanks to that a kernel can launch new kernels during
execution. With this feature, the whole power grid is implemented as
a single kernel, during each simulation time step, it launches several
component computation kernels as child kernels. Within the child
kernels, there’re multiple kernels for components with detailed models,
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e.g. kernels that simulates the identical circuit parts within the MMC
model. Therefore, this approach can simulate systems containing very
detailed component models efficiently. Overall the approach proposed
in [14] is very efficient, however, managing the whole simulation on
device makes applying vendor’s math library sometimes not possible
as the device-side API is not always available [15]. Launching kernel
from the device side is not free and only limited resources can be
dedicated to the child kernels [16], therefore, it can generate significant
overheads when the number of child kernels increases.

Related works regarding faster-than-real-time (FTRT) are mainly
focused on using reconfigurable devices [17,18] as well as using high-
performance computing (HPC) platforms [19]. Reconfigurable devices
usually has very limited memory and computing resources that re-
stricts the application to simulation of large scale grids. HPC platforms
usually does not have these constraints but the communication be-
tween parallel processes as well as the memory bandwidth becomes
bottleneck.

In this work, we focus on using GPU to accelerate coarse-grained
automatic parallelization methods, and we choose LB-LMC due to its
high scalability—as discussed in [9]. The main contributions of this
work are:

+ We propose an approach that exploits data- and task-parallelism
in an automated way for component computations so to effi-
ciently utilize the GPU and to increase the performance, as well
as maintaining scalability when the type of component increases
with the future developments. Moreover, as we schedule kernel
launch from the host side, vendor-optimized math libraries can
be used.

GPU-based approaches are intuitively data-parallel, but there
were few studies regarding the application of task-parallel. In
[12], task-parallelism was considered to create data-parallel ker-
nel so that load balancing among GPU cores is improved. In
the end, a single compute kernel is created via automatic code
generation technique. This implementation is improved to real-
time execution, but it also limits the customization and extension
of the kernel code, for example using a numerical library for part
of computations. A multi-stream approach is applied in [13] but
is not completely task-parallel, because the concurrently executed
two LU-solver kernels are the same with different input data,
therefore, it is still possible to achieve similar performance via a
pure data-parallel implementation. The task-parallelism exploited
in this work is different to previous studies as it affects the
execution order and concurrency of different compute kernels.
We propose a graph-based approach to overcome race condition
issues while maintaining high scalability. Paralleled component
computations can easily cause race conditions since each bus
can have connections to multiple components. Previous studies
often use programming tools such as mutex, atomic operations
to avoid this issue. However, these can potentially degrade the
performance largely [20].

We demonstrate the use of a flexibility layer that could translate
the compute kernel as well as the host program to the target
heterogeneous computing framework during compile time. The
implementations of almost all previous GPU-oriented approaches
had only focused on using CUDA as the programming framework,
which can efficiently utilize the performance of Nvidia GPU but
does not allow the use of hardware from other vendors. The
compatibility of our implementation is extended without compro-
mising on the performance. Moreover, vendor-tuned numerical
libraries can be used when executing on GPUs from different
vendors, leading to efficient utilization of the GPU hardware.

This paper is organized as follows: in Section 2 we introduce the
mathematical representation of power systems using dynamic phasors
and the parallel simulation algorithm; in Section 3 we introduce the
computational approach including the data- and task-parallel approach
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and the graph-based thread safety design; in Section 4 we explain the
implementation of the simulator; and in Section 5 and Section 6 we
demonstrate and evaluate the approach using an IEEE test case, to
better highlight the achievable performance, a synthesized test network
with increasing size is used. Finally, in Section 7 we discuss the major
advantages and limits of the proposed approach.

2. Mathematical representation

For simulation purposes, power systems can be represented by a
differential-algebraic system of equations (DAE)

X = f(x,u)
0=g(x,u)

(€8]

where the ordinary differential equations (ODEs) represent the dynamic
components in the system: for example, in traditional transient stability
analysis (TSA) programs, these differential equations come from the
machine equations and the corresponding controllers; the algebraic
equations (AEs) represent the topological constraints of the network.
Such formulation can also be extended to model modern power sys-
tems with suitable modeling of distributed generation components e.g.
photovoltaic fields, wind turbines, etc.

2.1. Shifted frequency analysis
The procedure of performing SFA can be briefly described as fol-

lowing [2]. First, the analytical signal of the original signal is produced
with the help of Hilbert transform:

x,(1) = x(t) + jH [x(1)], 2
where H[-] denotes the Hilbert transform, defined formally as:
+oco
Hx] = L / XDy, 3)
T ) —T

Suppose that a power system signal x(r) = A(f)cos(w,t+0) is given, then
the analytical signal is obtained by

H [A@)cos(w,t + 0)] = A@)sin(wgt + 0),
X, (1) = x(t) + jH[x()] = A(t)cos(w,t + 0) + jsin(wgt + 0)
= A(t)el%el",

Afterwards, the signal is shifted by the frequency — f,, using its angular
speed we get

Xarshi fred () = (A@D)cos(@,t + 0) + jsin(w,t + 0)) - e /",
= A(e/le/ . g5t
= A(ne’’.

Therefore, the original power system signal is shifted to frequency equal
to zero. The model of network components e.g. capacitors, inductors
can be found in [1].

Moreover, if the original signal has a spread of different frequency
components, the SFA can also be extended by using a set of Fourier
coefficients as explained in [21]. The application as well as accu-
racy analysis regarding SFA and Hilbert transform based method are
discussed in [1,2,21-23].

2.2. Parallelization method

The main idea of the LB-LMC method [9] employed in this work is to
separate the component computation from the global network solution.
Explicit integration is used typically for the non-linear components, and
implicit integration is used for the linear network representation. Once
components equations are discretized, components can be clustered in
voltage or current type based on their characteristics at the terminal,
ie.

I"(k + 1) = f(v(k), i(k), x(k), u(k), k), @
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Fig. 1. SIMT-based compute kernel design for different components.

Vi(k + 1) = f(v(k), i(k), x(k), u(k), k). 5)

Since the decoupled components are represented by controlled source
in the original network, the new network solution is obtained by
applying the modified nodal analysis (MNA) method. Combining Egs.
(4)-(5), we can represent this step as

YX(k+ 1) = b(uv(k), i(k), I"(k), V"(k), k), (6)

where Y is the admittance matrix, b is the source vector, and X (k + 1)
is the new network solution vector.

By using explicit integrator for nonlinear components we achieve
high parallelizability of the solution while by implicitly integrate the
linear components of the network we improve the stability of the
overall numerical solution. The accuracy concern about using explicit
methods has already been clarified via stability analyses in [9].

The whole solution flow can be roughly divided into two steps,
namely component step, where Egs. (4)—(5) are evaluated in parallel,
and network step, where Eq. (6) is solved with the help of GPU-based
basic linear algebra subprograms (BLAS) library. An additional step
named reduction is introduced between these two steps to solve the race
condition among threads and is discussed in Section 3.2.

3. Computational approach

In order to execute and coordinate the execution on GPU devices,
we implemented the program using the OpenCL framework [24]. Like
most of the other frameworks targeting heterogeneous platform, the
programming model of the OpenCL framework abstracts the hardware
into two types, namely the host and the device. The host is used to coor-
dinate the execution of computing tasks as well as the data movement
among different memory objects, whereas the device is responsible for
the actual computation. The compute kernels are the code that will be
executed in parallel on the device. In this section, we will introduce the
design of our kernels so to achieve data- and task-parallelism.

3.1. Data parallelism

A compute kernel is by its nature data-parallel as the same code is
executed by multiple threads, and each thread is usually programmed
to take different data by its thread-ID. In order to utilize the GPU
efficiently, many previous works have managed to maintain the com-
putations fully on GPU so that the communication overhead between
GPU and CPU can be avoided. This is also the case with this work.
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Fig. 2. Simple connected directed graph and its incidence matrix. The dynamic edges
are marked with red.

Finally, since we have a component step and network step during each
simulation step, our GPU kernels are designed for the two steps, re-
spectively. In this work, the component kernels are designed following
the SIMT model, i.e. a compute kernel is designed for each type of
component, and each instance of such component is computed by a
thread, as shown in Fig. 1. Therefore, the complete routine of one
type of component — including the numerical integration as well as
auxiliary transformations e.g. park transform - is performed inside the
corresponding component kernel. As a result, different threads for the
same compute kernel follows an identical execution path. Therefore,
thread homogeneity is maintained for each type of component.

The network step is formulated as a set of algebraic equations;
therefore, it can be solved via standard BLAS libraries or linear solver
libraries, which automatically generate compute kernels and exploits
data-parallelism during execution. These libraries have been exten-
sively studied and developed for different platforms, hardware vendors
also provide their own implementations, e.g. cuBLAS, cuSOLVER by
Nvidia, and rocBLAS, rocSOLVER by AMD, etc.

3.2. Graph-based thread safety design

When component computations are parallelized, collecting all com-
ponent outputs in to the source vector b will likely cause race conditions.
This is because most of the nodes are connected with multiple dy-
namic components, e.g. two generators, to the same bus or at any
bus with more than a single line connected to it. Apart from model-
ing approaches such as aggregated component models, static network
models, different programming techniques can be applied as well to
solve this issue, e.g. mutex, atomic operations, etc. However, since
these techniques basically serialize the concurrent operations, when the
network structure becomes more complicated, or the number of multi-
terminal components is large, performance may degrade severely [20].
To maintain scalability when simulating complex networks, we propose
a graph-based approach to overcome this issue. Let us assume the
power network is represented using a directed graph G = (V, E), where
all buses are mapped into vertices V and all components are mapped
into edges E. Selecting all edges mapped from dynamic components
E’ C E, and associated vertices V' C V. Let D be the incidence matrix
of G’ = (V', E'), e be the vector of component outputs, then the new
source vector b for MNA can be calculated using this incidence matrix
D and the e vector as

b= De(V"(k + 1), I"(k + 1)). ¥4}

As a result, since each component has an unique entry in the vector
e, their output can be written concurrently. This step is referred to as
reduction. An example can be found in Fig. 2 where the D matrix and
e vector, of the associated graph are illustrated. Due to the fact that
this step is a pure matrix—vector multiplication, it can be implemented
using standard GPU-based BLAS libraries.
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3.3. Task parallelism

Operations like the launch of compute kernels or read-write actions
to/from the device’s memory are normally referred to as tasks. In
addition to the data parallelism within the compute kernels, a high level
of parallelism is exploited via the task graph which enables concurrent
kernel execution. The task graph is constructed by analyzing the data
dependency in each kernel’s input data; kernels without data races can
be labeled as independent tasks. For instance, when different kernels
are taking the same data as input, no data race exists if there are only
read-after-read operation.

The implementation of a task-parallel runtime mostly relies on the
corresponding OpenCL implementation. In OpenCL, the execution order
of enqueued tasks is determined by the implementation itself, even the
tasks (or commands) in an in-order command queue can be reordered
during execution [24]. In out-of-order command queues, a task graph
can be dynamically constructed according to the explicitly indicated
data dependencies, therefore, independent tasks can be executed con-
currently. In contrast, CUDA requires the user to launch kernels on
different streams or to manually construct a CUDA graph so that con-
current kernel execution can take place. To overcome this difference,
we designed our kernel execution similar to the CUDA way. Since the
tasks to be executed mostly remains the same during the simulation,
we construct the task graph offline and launch independent tasks for
different command queues or streams, and use events to synchronize
between them. An example can be found in Fig. 3, which is constructed
from the data dependency of the originally in-order executed kernels as
shown in Fig. 3(a).
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4. Implementation

4.1. Single-core implementation for CPU: Optimized sequential implemen-
tation

To evaluate the performance of the proposed approach we need
the best possible sequential implementation of the same problem.
Sequential simulation algorithms executed on the modern computer
architecture might not actually be executed sequentially, especially for
compiled languages such as C/C++. Automatic parallelization tech-
niques of the compilers has been studied for many years [25] and
are already available on most of the compilers, e.g. the automatic
vectorization by GNU GCC [26]. With these techniques, instructions
executing on a single CPU core can follow a SIMD style as shown
in Fig. 5, where a vectorized y « ax operation is executed. This
instruction level parallelism can be applied on almost all of the modern
CPUs since the SIMD instruction sets e.g. Streaming SIMD Extensions
(SSE), Advanced Vector Extensions (AVX), are supported by almost all
of the modern CPUs, provided that the code implementation fulfills
certain requirements, e.g. memory alignment, etc. Since numerical sim-
ulations are often dominated by linear algebra operations, the compiler
optimization like auto-vectorization has a significant impact to the
overall performance. Therefore, these features should be enabled in
most cases for C/C++ based programs to achieve the best performance
on CPU. To ensure a fair comparison, we use the linear algebra library
Eigen [27] to implement the matrix operations and enabled the highest
compiler optimization. As result, the sequential implementation we will
use as reference for performance evaluation already has a certain level
of parallelization.

4.2. Fully parallel implementation

The fully parallel program adapts the LB-LMC method and the
compute kernel design introduced in Section 2 and Section 3 to exploit
data- and task-level parallelisms. The architecture of the fully parallel
program is reported in Fig. 4. Using the OpenCL framework leads
to high portability because of the wide range of OpenCL-conforment
products [28]. Since the framework is only an open standard and a
corresponding implementation needs to be provided, either a vendor-
supplied OpenCL implementation or an open-source implementation
[29] can be used. To increase the performance while keeping the
portability, a translation layer is added so that the OpenCL applica-
tion programming interfaces (APIs) are internally translated to use
the vendor-specific programming framework’s API, and the compute
kernels are translated into target framework’s kernel as well, as shown
in the lower part of Fig. 4. This translation is implemented for Nvidia
and AMD GPUs via our own extension of CLCudaAPI [30] for the
host program, and for the compute kernels, a directive-based tool is
implemented. These translations take place during the compilation,
therefore, they will not produce extra overhead during the execution.
For instance, when the program is executed on an Nvidia GPU and
CUDA is selected as the back-end, the program can automatically
translate the original OpenCL API calls to CUDA and Nvidia’s just-
in-time (JIT) compiler NVRTC to compile the compute kernels. For
AMD GPU, the program uses its HIP framework and selects the ROCm
framework as the computing back-end.

Another advantage for translating the OpenCL API to vendor-
specific framework’s API is that the program is allowed to use vendor-
optimized numerical libraries, e.g. cuBLAS on CUDA device and
rocBLAS on ROCm device, providing more efficient utilization of the
hardware.
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Fig. 5. Illustration of SIMD execution on single CPU core.

5. Study cases
5.1. System response during disturbance

Before evaluating the computational performance of the proposed
approach and its implementation for faster-than-RT execution, we first
evaluate its accuracy using as reference the conventional EMT simula-
tor DIGSILENT PowerFactory [31], which is widely used for electrical
power system analysis.

For this purpose we used the IEEE14 network (Fig. 6). An example
provided by DIZSILENT. The machines are modeled with the standard
model in PowerFactory. At time ¢ = 0.1s, Line_0001_0005 is opened,
creating a disturbance into to the system. To observe the system re-
sponses, the EMT simulation with PowerFactory is executed with 50 ps
time step for 20s. We then compared the result obtained from this
simulation with our SFA-based approach with the same time step, as
shown in Fig. 7. Even if slight mismatch can be observed from the
results, it is clear the developed tool based on SFA provided equivalent
results to the EMT one. We imagine that the slight mismatch can be
attributed to the use of different numerical integration schemes, as well
as to the event handling methods.

5.2. Accuracy analysis

To compare the SFA simulation result with the EMT simulation
result as well as to compare SFA simulation with different time steps,
we use the original signals reconstructed from the SFA signal. This
is done by first interpolating the signals with a larger time step into
the time step of the reference via linear interpolation. Afterwards,

Table 1

Mean and Median Relative absolute error during first cycle after event with different
time step. If without specification, listed cases are compared with 50 ps time step
simulation with SFA.

100 ps 500 ps 1 ms 50 ps SFA - EMT
(PowerFactory)
Mean 2.46e—03 9.06e—03 1.26e—02 1.38e-01
Median 1.04e—-04 3.11e-04 3.75e—-03 8.84e-02
Table 2

Mean and Median Relative absolute error after 10 cycles after event with different time
step. If without specification, listed cases are compared with 50 ps time step simulation
with SFA.

100 ps 500 ps 1ms 50 ps SFA - EMT
(PowerFactory)
Mean 1.72e-05 7.11e-05 1.50e—-04 9.73e—-04
Median 1.94e-05 7.87e-05 1.54e—-04 1.08e-03

the original signal is reconstructed by shifting the SFA signal with its
central angular speed @,

a(r) = Re{(a) (Ne’”'}
= A(t) cos(w,t + 0(1)),

(8

where A(t), and 6(r) is the amplitude and phase angle of the SFA
signal, respectively. Finally, the absolute relative error over time e(r)
is calculated via

a(t) — a(t)er

9
a(t)re/ ©

e(t) =

where the reference a(?),,, is chosen as the reconstructed signal from
SFA simulation with 50ps time step. To evaluate the capability of
our SFA-based approach with larger time steps, the SFA simulation is
executed with 100ps, 500ps and 1ms time steps. Results are shown
in Fig. 8, including the evolution of voltage magnitude as well as the
absolute relative error. We also calculated the error of SFA with 50 ps
compared to electromagnetic transient (EMT) result in PowerFactory.

Tables 1 and 2 lists the mean and median value of the absolute
relative error e(r) during the first cycle, i.e. t = [0.1, 0.116] s, as well as
after 10 cycles, i.e. r = [0.26, 0.276] s. It can be noticed that the error
is small throughout the period and grows slowly with increasing time
steps.
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Fig. 7. System responses after opening Line_0001_0005, (a) Current over Line_0001_0002/1, (b) Generator rotor speed, (c) Voltage at Bus 5, (d) Generator electric torque.
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system.

6. Performance analysis

To evaluate the performance of our simulator with different sizes
of networks and especially large networks, we create synthesized net-
works using copies of the IEEE-118 test system [32] connected via
transmission lines, as shown in Fig. 9, where the Bus2 of the current
copy and the Bus117 of the next copy are connected. The benchmark is
executed for 2x up to 64X system copies. As a single IEEE-118 system
contains 52 generators, the 64x system contains 3328 generators, and
in total 43456 dynamic components.

Simulations in this section are compiled and executed on a server
with two AMD EPYC 7H12 CPUs (2.6 GHz base clock frequency, 64
cores each, hyper-threading disabled); 256 GB DDR4 3200 MHz main
memory; one Nvidia A100-40 GB GPU, and one AMD MI100 GPU. The
operating system installed is Ubuntu 20.04.5 LTS, kernel version
5.15.0-67-generic; CUDA Toolkit version V11.8.89; AMD HIP
version 5.1.20532-£592a741, ROCm version 5.1.2.50102-55;
programs with AMD ROCm enabled requires clang compiler and thus
they are compiled using clang with version 10.0.0-4ubuntul, the
rest are compiled with GNU gcc version 9.4.0.

The host program was implemented in C++ using the C++17 stan-
dard. The optimized sequential program uses the Eigen library [27]
with version 3.3.7-2 to implement linear algebraic operations on
the host side, which is also configured to use OpenBLAS [33] as its
back-end with maximum threading set to one.

0.120  0.125 0.130  0.135

Time (s)

(b)

of absolute relative error during simulation, compared with SFA at 50 ps time step.

0.100  0.105  0.110  0.115 0.140

Table 3
Speedup with task parallel execution.
Computing framework Average execution time per step (ms) Speedup
Sequential task Parallel task
execution execution
HIP(ROCm) 0.576 0.493 1.17
CUDA 0.203 0.169 1.2

6.1. Optimized sequential

The simulation algorithm that the sequential program uses is the
same as the parallel one except that the reduction step is discarded,
since it can directly write to the source vector b sequentially with-
out data races. Therefore, the computational load for the sequential
program is lighter than the parallel program. Results show that the
optimized sequential implementation can already meet faster-than-RT
for 2x to 8x IEEE-118 systems, assuming a time step of 1 ms, as
illustrated later in Section 6.3 in Fig. 10(a).

6.2. Effect of task-parallel execution on data-parallel program

The performance increase with task-parallelism could vary greatly
to different systems and scenarios. Using the 2x connected IEEE-118
system copies test case, the task-parallel execution has contributed
around 20% speedup on top of pure data-parallel execution as shown
in Table 3. We need to point out that our test case is nearly the worst-
case scenario for the task-parallel execution. Because the tasks in our
IEEE-118 system are associated with synchronous generators, inductors
and capacitors, which share a large difference in their computational
load.

6.3. Fully parallel

The performance of the fully parallel program on GPU is bench-
marked with different number of IEEE-118 system copies as well as
on different hardware with different implementations. Three groups
of benchmarks were performed on AMD and Nvidia GPU listed as
following:

» OpenCL back-end: compute kernels are compiled using OpenCL,
the reduction and network steps are executed using dense BLAS
library clblast,

» CUDA/ROCm back-end: compute kernels are compiled using the
vendor-specific framework, namely CUDA or ROCm, reduction
and network step are also executed using the dense BLAS library
of each framework, namely cuBLAS or rocBLAS,
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Fig. 10. (a) Average execution time per simulation step, (b) Speedup of parallel simulation on GPU over optimized sequential simulation on CPU.

Table 4

Minimum time step allowed for faster-than-real-time execution dt,,,, k,, at 1ms step,
and overall speedup over sequential simulation with different systems sizes (as IEEE118
system copies)

System size (x118) 2 4 8 16 32 64
dt,;, 0.17ms  0.17ms 0.27ms 0.50ms 1.37ms 4.82ms
ks, at 1 ms step 5.91 5.86 3.66 2.00 0.73 0.21
Speedup over sequential 2.24 12.12 26.44 46.53 65.03 82.16

+ CUDA/ROCm back-end with dense & sparse BLAS: based on the
previous benchmark, the reduction step is executed using a sparse
BLAS library of each framework, namely cuSPARSE or
rocSPARSE, instead of a dense one.

The benchmark results are shown in Fig. 10(a). It can be noticed
that the execution on GPU with vendor-optimized libraries has demon-
strated best performance among all implementations. The MI100 GPU
has shown slightly lower performance than the A100 GPU, which can
be attributed to the lower memory bandwidth of the former GPU.
Nevertheless, albeit lower performance than vendor-libraries, simula-
tions using the OpenCL framework and clBlast library still demon-
strated faster-than-RT capability up to around 32x IEEE-118 system.
The speedup of different implementations over sequential execution is
calculated by

! parallel

k

speedup =
! sequential

and illustrated in Fig. 10(b). The most performant implementation
achieves over 82x speedup compared to the optimized sequential pro-
gram. To see the faster-than-RT capability clearly, we define the faster-
than-RT factor k, as

h

kft t_step '

where h is the simulation time step, and 7,, is the average execution
time per step taken from the benchmark. By assuming a simulation time
step of 1 ms, we can calculate the factor k,, for the CUDA case with
dense and sparse BLAS, this is shown together with minimum time step
allowed for FTRT execution, and speedup over sequential execution as

shown in Table 4.

Table 5

Operational intensity analysis for basic numerical operations with FP64.
Operation W o, Oy
Complex multiplication 6 4.8 2-8
Complex add/sub 2 4.8 2.8
Sine >10 8 8
Cosine >10 8 8

6.4. Computational performance

To evaluate the computational performance of the overall simu-
lation, we apply the roofline model [34] that has been used widely
in performance evaluation of parallel programs. The model uses the-
oretical peak performance to visualize the “ceiling” of the computing
hardware, and therefore evaluate the performance of the program
execution on them based on the operational intensity I and achieved
performance P. The operational intensity is defined by
=W [w]

0 byte |’

where W, or referred to as work, represents the number of total
floating-point operations performed in the program, and Q the total
bytes of memory traffics incurred by executing the program. Table 5
calculates the W and Q for basic numerical operations with FP64, i.e.
double-precision floating-point. The operational intensity of the overall
simulation is then analyzed and listed in Table 6, where n, denotes the
number of corresponding component, nnz denotes the number of non-
zeros in the incidence matrix, n, the total number of dynamic branches,
and finally n, the number of total simulation nodes. For simulating the
components, actual W and Q will vary based on different numerical
integration methods and implementations, as well as for the reduction
step, actual W and Q also varies for different sparse matrix formats.
Therefore, they are both difficult to estimate, and here we give only
rough estimates. In addition, in sequential simulation the reduction step
is not needed since there will be no race conditions.

And the performance P can be calculated by

P W [FLOP]’
T

second

where T is the execution time of the program. Finally, the roofline
model is built based on the theoretical analysis of numerical intensity
and execution benchmarks as shown in Fig. 11. It can be noticed that
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Fig. 11. Roofline model of the parallel and sequential cases, larger marker represent larger network sizes.

Table 6
Operational intensity analysis for main simulation steps.

Main simulation functions Internal stages W (n) Q,(n) Q,,(n)

Capacitor/Inductor - >16n, >8 - 6ny - 2 >8 - 6ny - 2
rotatingFrameTransform >44n, 0 0

Synchronous machine evaluateDirevative >518n, 0 0

Y calculateOutput >101n, 0 0
memoryRW - >8 - 180n, >8 - 17n,

Reduction (sparseBLAS) - ~2 - nnz -2 ~8 -3 -mnz+2-8-n, ~2-8-n,

Network - 8nZ +8n, >2 - 8. (n2+2n,) >2-8-n,

the FLOPS achieved via parallel simulation on GPU already exceeds the
theoretical peak FLOPS of the CPU with 4x IEEE118 cases. Moreover,
the performance observed with our approach on the A100 GPU is
converging to its memory bandwidth bound when simulating larger
networks and achieving nearly 1TFLOPS. This has demonstrated the
performance and efficiency of our parallel simulation approach.

7. Conclusion and outlook

In this work, we demonstrated our approach to accelerate power
system simulation using GPU and achieves faster-than-RT capability
for small and large networks. The original simulation problem is paral-
lelized using the LB-LMC method and separated into two steps, namely
the component step and the network step. The component step is mapped
into massively parallel execution following the SIMT programming
model, whereas the network step is executed using a high performance
linear algebra library. Our concept exhibits two levels of parallelism,
namely data-parallel and task-parallel, where the former is brought by
the SIMT-based design of compute kernels for components, and the
latter by the concurrent task execution based on a task graph. More-
over, we also demonstrated the importance of HPC implementations on
real-time (RT) or faster-than-RT simulations: the optimized sequential
simulation can also achieve faster-than-RT for small networks with the
help of SIMD execution; the fully parallel program gains further perfor-
mance increase by exploiting sparse matrix structure in implementing
linear algebraic operations. In the end, our implementation shows
faster-than-RT capability for electromagnetic transients with a dynamic
phasor representation for networks with more than six thousand buses.

Limitations of our approach mainly exists in the fact that we achieve
data-parallelism based on component types. When simulating a system
where the components are highly divergent in types, the massively
parallel thread capability will be limited and the overall performance

relies on the task-parallel execution, i.e. concurrent execution of dif-
ferent compute kernels. Future work could be conducted to study the
performance and improvements under such scenario, which also needs
the implementation of more complex components. Moreover, a more
detailed study of HPC implementations for GPUs is also important
to performance improvements, e.g. a detailed benchmark of different
BLAS libraries on GPU as well as different numerical methods for linear
systems. Furthermore, the possibility of multi-GPU execution should be
studied in the future to enable fast simulation for even larger networks.
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