Home > Publications database > Robustness evaluation of large-scale machine learning-based reduced order models for reproducing flow fields > print |
001 | 1026510 | ||
005 | 20250204113856.0 | ||
024 | 7 | _ | |a 10.1016/j.future.2024.05.005 |2 doi |
024 | 7 | _ | |a 0167-739X |2 ISSN |
024 | 7 | _ | |a 1872-7115 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03447 |2 datacite_doi |
024 | 7 | _ | |a WOS:001247468300001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03447 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Higashida, Aito |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Robustness evaluation of large-scale machine learning-based reduced order models for reproducing flow fields |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1718109634_32316 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The robustness of an artificial neural network that performs model order reduction for flow field data is studied. The network is trained with a large-scale distributed learning approach using up to 6,259 nodes of the supercomputer Fugaku. Flow around two square cylinders with a varying distance between their centers is investigated. The network is trained and tested with data from numerical simulations. First, the capability to reproduce flow fields with 2, 12, and 24 modes is investigated by comparing the reconstructed flow data to simulated data. It is shown, that reconstructions based on 2 modes cannot capture both, low- and high-frequency flow structures correctly, whereas predictions based on 12 and 24 modes yield improved flow fields, especially in the case of high-frequency waves in the vicinity of the square cylinders. Reconstructions with 24 modes provide smooth velocity fields that reproduce all relevant low- and high-frequency waves for all variations of the distance between the two square cylinders. Second, the performance of the machine learning-based reconstructions are compared to proper orthogonal decomposition, which is a commonly used reduced order model technique. The comparison only includes flow fields based on 24 modes. For all geometric variations, the mean squared errors of the reconstructions by the conventional method are higher than those of the machine learning model. This underlines the advantage of artificial neural networks over linear methods like proper orthogonal decomposition for tasks like reconstructing flow fields that are characterized by non-linear governing equations. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
536 | _ | _ | |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708) |0 G:(DE-Juel1)JLESC-20150708 |c JLESC-20150708 |f JLESC |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ando, Kazuto |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Rüttgers, Mario |0 P:(DE-Juel1)177985 |b 2 |
700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 3 |
700 | 1 | _ | |a Tsubokura, Makoto |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1016/j.future.2024.05.005 |g Vol. 159, p. 243 - 254 |0 PERI:(DE-600)2020551-X |p 243 - 254 |t Future generation computer systems |v 159 |y 2024 |x 0167-739X |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1026510/files/1-s2.0-S0167739X24002176-main-2.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1026510/files/1-s2.0-S0167739X24002176-main-2.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1026510/files/1-s2.0-S0167739X24002176-main-2.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1026510/files/1-s2.0-S0167739X24002176-main-2.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1026510/files/1-s2.0-S0167739X24002176-main-2.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1026510 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177985 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165948 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-19 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-19 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FUTURE GENER COMP SY : 2022 |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-17 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FUTURE GENER COMP SY : 2022 |d 2024-12-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|