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A B S T R A C T

The robustness of an artificial neural network that performs model order reduction for flow field data is
studied. The network is trained with a large-scale distributed learning approach using up to 6259 nodes of
the supercomputer Fugaku. Flow around two square cylinders with a varying distance between their centers is
investigated. The network is trained and tested with data from numerical simulations. First, the capability
to reproduce flow fields with 2, 12, and 24 modes is investigated by comparing the reconstructed flow
data to simulated data. It is shown, that reconstructions based on 2 modes cannot capture both, low- and
high-frequency flow structures correctly, whereas predictions based on 12 and 24 modes yield improved flow
fields, especially in the case of high-frequency waves in the vicinity of the square cylinders. Reconstructions
with 24 modes provide smooth velocity fields that reproduce all relevant low- and high-frequency waves
for all variations of the distance between the two square cylinders. Second, the performance of the machine
learning-based reconstructions are compared to proper orthogonal decomposition, which is a commonly used
reduced order model technique. The comparison only includes flow fields based on 24 modes. For all geometric
variations, the mean squared errors of the reconstructions by the conventional method are higher than
those of the machine learning model. This underlines the advantage of artificial neural networks over linear
methods like proper orthogonal decomposition for tasks like reconstructing flow fields that are characterized
by non-linear governing equations.
1. Introduction

Computational Fluid Dynamics (CFD) has been a significant applica-
tion of high-performance computing for a long time and an indispens-
able tool for manufacturing. For example, multi-objective vehicle shape
design requires many fluid simulations with different shapes to evaluate
and optimize the aerodynamic properties of the vehicle body. However,
executing many simulations that resolve the smallest turbulent scales
according to Kolmogorov’s −5∕3 power law at a Strouhal number (𝑆𝑡)
of 𝑆𝑡 = 𝑓𝐿∕𝑈𝑟𝑒𝑓 = 100 [1] is nearly impossible considering a realistic
computing budget, where 𝑓 is the frequency, 𝐿 is the vehicle length,
and 𝑈𝑟𝑒𝑓 is the uniform inflow velocity.

To handle problems that require a large number of numerical
flow simulations, various model order reduction techniques have been
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proposed in the CFD community. Proper orthogonal decomposition
(POD) [2] is the most commonly used method and offers ways to
find optimal lower-dimensional approximations for a given data set,
e.g., data of flow fields. First, the hyperplane passing through the
nearest space of most of the original data is constructed with the
basis finding method. After identifying the basis, the original data
is represented approximately using the data that is projected onto
the hyperplane (hereinafter called ‘‘reduced variables’’). The ratio of
the number of bases that can reproduce the original data within an
allowable error range to the number of dimensions of the original data
corresponds to the data compression ratio.
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However, because POD is a linear reduction method, the nonlinear
behavior of high Reynolds number (𝑅𝑒) flow fields cannot be success-
fully reduced into a few variables. To address this problem, recently, a
nonlinear model reduction technique using neural networks has gained
attention. Murata et al. proposed the mode decomposing convolutional
neural network autoencoder (MD-CNN-AE) that reduces the data of the
two-dimensional flow around a circular cylinder [3]. They successfully
reduced the Kármán vortex street at 𝑅𝑒 = 100 into only two variables
without significant reproduction loss.

Ando et al. extended the MD-CNN-AE to three-dimensional flow
fields with a higher Reynolds number (𝑅𝑒 = 1000) [4,5] using large-scale
distributed machine-learning on the Supercomputer Fugaku [6,7]. A
three-dimensional flow around a cylinder, which was calculated using
28 million cells, was reproduced using 64 variables, and the time series
of the reduced variables were predicted using a long-short-term mem-
ory (LSTM) network [8]. Their implementation of distributed machine
learning scales up to 25,250 computational nodes (1, 212, 000 cores) on
Fugaku, and the convolution routine indicates over 100 PFLOPS as a
single-precision floating-point arithmetic performance.

Hasegawa et al. evaluated the robustness of a neural network-
based reduction model [9]. That is, the performance of the model for
reproducing flow field characteristics was examined for flow around
bluff bodies with varying shapes. The shapes were created by employ-
ing trigonometric functions with random amplitudes. The model was
trained with data of two-dimensional flow around random variations
of the bodies, and the flow around a variation that did not belong to
the training data was successfully reproduced.

1.1. Related works

Neural network-based robustness analyses have not only been con-
ducted for model order reduction techniques, but also for flow field
reconstruction in general. Yu et al. investigated the model robustness
for reproducing two-dimensional flow around a bridge body [10].
Shape variations were realized by changing the width and depth of the
initial bridge body. They introduced the laws of mass and momentum
conservation as loss functions into the training process. Their method
demonstrated that the flow around an unknown bridge body that has
not been part of the training data can be successfully reproduced. More-
over, Morimoto et al. studied the reproduction performance of the wake
behind two parallel circular cylinders with varying distances and radii
using a super-resolution technique [11]. Morimoto et al. also indicated
the limitation of the robustness of a convolutional autoencoder [12].
They demonstrated that a model trained with flow fields around two
square cylinders fails to predict the flow field around a single square
cylinder, and vice-versa.

Data-driven techniques for analyzing highly resolved physical do-
mains require large-scale distributed machine learning. Such machine
learning approaches have recently been demonstrated on the top-
ranked systems listed in the TOP500 ranking [13]. For example, Patton
et al. utilized massively parallel deep learning to extract structural in-
formation from raw microscopy data with atomic resolution [14]. They
used nearly all of the resources of the Oak Ridge National Laboratory’s
Summit system [15], and achieved practically perfect weak scaling up
to 4200 nodes and showed a floating point arithmetic performance of
152 PFLOPS. Kurth et al. applied Exa-scale machine learning to image
segmentation for climate data to specify extreme weather patterns.
They achieved 90.7% of the weak scaling performance using 27,360
graphics processing units (GPUs) on Summit and won the Gordon
Bell prize at the Supercomputing conference (SC) 2018 [16]. Yang
et al. reported the performance of a physics-informed generative ad-
versarial network (GAN) on Summit. Their calculations scaled up to
4584 nodes (27,500 GPUs) with 93.1% of the weak scaling perfor-
mance and showed 1.2 EFLOPS with half-precision calculation [17].
Jia et al. were honored with the Gordon Bell prize at the SC 2020
for machine-learning-enhanced ab initio molecular dynamics simula-
tions [18]. They achieved 91 PFLOPS in double-precision and 162∕275
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PFLOPS in mixed-single/half-precision using Summit.
1.2. Contributions

Neural network-based reduced order models can only develop their
full potential if their predictive capabilities are robust to different flow
configurations. Whereas the previously mentioned studies focused on
variations of single flow parameters, the current study investigates the
robustness of the model for varying execution conditions. Specifically,
in contrast to Hasegawa et al. who evaluated the robustness for shape
variations of a bluff body, which leads to a moderate difference in
flow characteristics, this study investigates the robustness for various
flow characteristics produced around two square cylinders separated
by varying distances, utilizing large-scale distributed machine learning
on Fugaku.

The paper is structured as follows. Section 2 describes the computa-
tional methods used to train the reduced order models. In Section 3, the
results of the robustness analysis are presented, followed by concluding
remarks in Section 4.

2. Methods

This section presents the computational methods that are used to
conduct the robustness study. First, the implementation of the dis-
tributed machine learning approach on Fugaku is explained in Sec-
tion 2.1. This contains general information about Fugaku, as well as
details about the scalability of the implemented algorithm. Second, the
numerical methods and the computational domain used to generate
training data in terms of flow fields are described in Section 2.2. Finally,
the architecture and hyperparameters of the machine learning model
are explained in Section 2.3.

2.1. Distributed machine learning on Fugaku

The supercomputer Fugaku was developed by the RIKEN Center
for Computational Science in Kobe, Japan.1 At the time of writing,
Fugaku is ranked number four among the HPC systems listed in the
TOP500 [13]. Fugaku has a single arm-based central processing unit
(CPU) named A64FX™, developed by Fujitsu.2 The A64FX™ is equipped
with four core memory groups (CMGs), equivalent to non-uniform
memory access (NUMA) nodes, and each CMG has 12 computational
cores. Each computational core runs at 2.0 GHz in normal mode
and 2.2 GHz in boost mode. The peak arithmetic performance of the
CPU when operating in normal mode is 3.072 TFLOPS for double-
precision, 6.144 TFLOPS for single-precision, and 12.288 TFLOPS for
half-precision. In boost mode, these increase to 3.3792 TFLOPS, 6.7584
TFLOPS, and 13.5168 TFLOPS, respectively. Double-precision matrix–
matrix multiplication (DGEMM) operations achieve an efficiency of
greater than 90%. Each CMG has 8 GiB of HBM2 memory and a 1024
GB/s node throughput. The Stream Triad performance is 830+ GB/s.

The Fugaku nodes are connected with TofuD interconnects [19].
The bandwidth is 6.8 GB/s per link, with six links. Consequently, the in-
jection bandwidth is 40.8 GB/s per node. The system has 158,976 nodes
and 7, 630, 848 cores. The theoretical full system peak performance is
488 PFLOPS in normal mode and 537 PFLOPS in boost mode [7]. Intel’s
OneAPI Deep Neural Network Library (oneDNN) [20] has been opti-
mized for the A64FX™ CPU. In this study, the PyTorch framework [21]
is used that is ported to Fugaku [22].

The scalable distributed machine learning implementation that has
been used by Ando et al. in previous studies is employed for the
current robustness study [4,5]. This implementation incorporates a
hybrid parallelization scheme combining data and model parallelism.
The performance of distributed learning owes to the performance of
data movement required for such parallelism. On the other hand,

1 RIKEN Center for Computational Science, https://www.r-ccs.riken.jp/en/
2 FUJITSU: https://www.fujitsu.com/global/
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Fig. 1. Computational domain.

the serial execution performance is dependent on the performance of
matrix–matrix multiplication in the convolution calculation because
the method’s neural network architecture is constituted with multiple
blocks of convolutional and pooling (or interpolation) layers, as de-
tailed in the following chapter. Using one CMG, the single-precision
floating-point arithmetic performance of the entire training loop is
370.31 GFLOPS (24.28% of the peak performance). This corresponds
to 1.5 TFLOPS for one node (4 CMGs). A convolution kernel indicates
753 TFLOPS (49.29% of the peak performance). This corresponds to
3.0 TFLOPS in terms of one node [23]. When the distributed ma-
chine learning implementation is scaled up to 25,250 nodes (1, 212, 000
cores), the single-precision floating-point arithmetic performance of the
entire training procedure is 7.8 PFLOPS, which is 72.9% of the weak
scaling performance relative to 750 nodes. In addition, the convolu-
tion routines reach approximately 100 PFLOPS at 25,250 nodes. The
speedup of flow simulation execution performance using the reduced
order model over the full order model (conventional CFD code) is four
orders of magnitude in the case of three-dimensional cylinder flow
(Re=1000) [4].

2.2. Numerical methods

The training data are obtained by simulating the flow field around
two square cylinders using the simulation framework CUBE [24]. CUBE
is a unified simulation framework that is based on the building cube
method (BCM) [25,26] and immersed boundary method (IBM) [27,28].
The governing equations are the three-dimensional incompressible fluid
continuity equation and Navier–Stokes equations

𝛁 ⋅ 𝐮 = 0, (1)

𝜌
( 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ 𝛁)𝐮
)

= −𝛁𝑝 + 𝜇𝛁2𝐮 + 𝐟 . (2)

Here, 𝒖, 𝜌, 𝑝, 𝜇 and f stand for the velocity vector, density, pressure,
kinematic viscosity, and the vector for an external force, respectively.
The constants are set to 𝜌 = 1 kg∕m3 and 𝜇 = 0.01 Pa s.

The computational domain is shown in Fig. 1. The uniform velocity
𝑈 = 1 m∕s is prescribed at the inflow boundary, a convective boundary
condition was used at the outflow boundary, the free-slip condition is
imposed on the top and bottom boundaries, and periodic boundaries
were used on the front and back sides.

The computational grid is generated using CUBE. The characteristic
length is the edge length 𝐷 of a square cylinder and set to 𝐷 = 1 m.
The spatial discretization is performed with the finite volume method,
which is uniform in both streamwise 𝑥, transverse 𝑦 and height 𝑧
directions with the grid size 𝛥𝑥∕𝐷 = 𝛥𝑦∕𝐷 = 6.250 × 10−4, 𝛥𝑧∕𝐷 =
1.875 × 10−3. The number of computational cells is (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) =
(1600, 800, 2), and the domain size is (40𝐷, 20𝐷, 0.05𝐷). Two square
cylinders are placed in the flow domain. The centers of the square
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cylinders are located at 10𝐷 in the streamwise direction from the inflow
boundary. The distance between the prism centers is defined as 𝑙.

The time integration is done using the Adams–Bashforth scheme
[29]. The time step is set to 𝛥𝑡 = 2.0 × 10−3 s. The Reynolds number
is defined by

𝑅𝑒 =
𝜌𝑈𝐷
𝜇

= 100. (3)

These conditions result in two asynchronous von-Karman vortices
that interfere with each other at the center line behind the two square
cylinders. By changing the value of 𝑙 as the initial condition of the
simulation, the interference pattern changes and the robustness of the
proposed method can be tested with various patterns.

To focus on the 2D flow around the square cylinders, the velocities
(𝑢, 𝑣) in the region enclosed by the red rectangle in Fig. 1 are ex-
tracted to be used as training data for the machine learning algorithm.
These vectors indicate the velocity in the streamwise direction and the
transverse direction, respectively. The number of cells of this cutout is
(𝛥𝑁𝑥, 𝛥𝑁𝑦, 𝛥𝑁𝑧) = (768, 384, 1), which corresponds to a cutout size of
(19.2𝐷, 9.6𝐷, 0.025𝐷).

Data pre-processing such as normalization or standardization is not
applied because the order of magnitude is unity for all the quantities.
However, to compare the predicted flow fields with data generated by
a POD approach, the input data for the machine learning model 𝐱𝑙𝑖𝑛𝑝𝑢𝑡(𝑡)
consists of the original instantaneous flow field 𝐱𝑙(𝑡) minus the averaged
flow field 𝐱𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐱𝑙𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝐱𝑙(𝑡) − 𝐱𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒, (4)

This is because mode decomposition using POD solves the problem by
reducing it to finding the eigenvectors and eigenvalues of the variance–
covariance matrix. To obtain the variance–covariance matrix, it is
necessary to subtract the mean value from the original data.

As shown in Fig. 1, the square cylinders are placed such that
they are vertically symmetric. A total number of 50 simulations were
conducted with an increment of 𝛥𝑙 = 0.0625𝐷, such that the distance
between the centers of the prisms range from 1𝐷 to 4.0625𝐷. Snapshots
of the flow fields, which serve as training data, were saved with a time
interval of 𝛥𝑡 = 0.25 s. For each simulation, 10,000 snapshots were
captured for 2, 500 s.

2.3. Machine learning techniques

Fig. 2 shows a schematic of the network structure. The network has
two levels. First, highly resolved snapshots of the flow fields function
as input to the encoder of the network, where the dimensions are
gradually decreased. A fully connected layer with  neurons yields the
latent vector containing information of the reduced variables. Second,
the decoder of the network splits up into  branches, one for each
mode of the decomposition. The elements of the latent vector function
as input to each branch. In each branch, the dimension is successively
increased to output the decomposed flow field for the corresponding
mode. Finally, these decomposed flow fields are combined to output a
flow field that reproduces the original flow field.

The MD-CNN-AE is trained to minimize the error between the
original flow field 𝐱(𝑡) and reconstructed flow field 𝐱𝑅(𝑡), with

𝐱𝑅(𝑡) =
𝑟
∑

𝑗=1
𝑑𝑒𝑐,𝑗

(

[

𝑒𝑛𝑐 (𝐱(𝑡))
]

𝑗

)

, (5)

where 𝑒𝑛𝑐 is the encoder branch, 𝑑𝑒𝑐,𝑗 stands for the decoder branch
of the 𝑗th mode, and 𝑟 represents the number of modes. This optimiza-
tion problem is formulated as
{

𝐰𝑗 ,𝐛𝑗
}𝑟
𝑗=1 = 𝑎𝑟𝑔𝑚𝑖𝑛{�̃�𝑗 ,�̃�𝑗

}𝑟
𝑗=1 ∫

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

‖

‖

𝐱(𝑡) − 𝐱𝑅(𝑡)‖‖
2 𝑑𝑡, (6)

where
{

𝐰 ,𝐛
}𝑟 are the weights and biases of the neural network.
𝑗 𝑗 𝑗=1
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Fig. 2. Concept of the MD-CNN-AE.
Table 1
Network structure of the encoder of the MD-CNN-AE.

Encoder

Layer Data size

Input (786, 384, 2)
1st Conv. (3, 3, 16) (786, 384, 16)
1st MaxPooling (384, 192, 16)
2nd Conv. (3, 3, 8) (384, 192, 8)
2nd MaxPooling (192, 96, 8)
3rd Conv. (3, 3, 8) (192, 96, 8)
3rd MaxPooling (96, 48, 8)
4th Conv. (3, 3, 8) (96, 48, 8)
4th MaxPooling (48, 24, 8)
5th Conv. (3, 3, 4) (48, 24, 4)
5th MaxPooling (24, 12, 4)
6th Conv. (3, 3, 4) (24, 12, 4)
6th MaxPooling (12, 6, 4)
Fully-connected
(Latent vector)

( , 1, 1)

The types and size of layers of the encoder and the 𝑛 decoder
branches are listed in Tables 1 and 2. The encoder decomposes the
input into modes by repeating six alternating 2D convolutional lay-
ers and max-pooling layers, and finally by inputting it into a fully
connected layer representing the latent space. In contrast, a decoder
reconstructs the flow field by first passing the encoder’s input through
a fully connected layer, then passing it through a convolution layer and
an upsampling layer alternately six times.

The hyperprameters used to train the network are listed in Table 3.
For encoder and decoder training, the Adaptive Moment Estimation
Optimizer (ADAM) [30] is employed to find the optimized parameters.
This algorithm calculates the moving average of the slope and the
squared slope. Parameters 𝛽1 and 𝛽2 control the decay rate of these
moving averages. In the training process, the 400,000 data snapshots
selected in 3.1 are used as training data, and a total of 100,000
snapshots as test data.

3. Results and discussion

In this section, the predictive capabilities of the MD-CNN-AE are
analyzed. First, the ability of the neural network to reproduce flow
246
Table 2
Network structure of a decoder branch of the MD-CNN-AE.

Decoder

Layer Data size

1st Value (1, 1, 1)
Fully-connected (12, 6, 4)
1st Upsampling (24, 12, 4)
7th Conv. (3, 3, 4) (24, 12, 4)
2nd Upsampling (48, 24, 4)
8th Conv. (3, 3, 4) (48, 24, 8)
3rd Upsampling (96, 48, 8)
9th Conv. (3, 3, 4) (96, 48, 8)
4th Upsampling (192, 96, 8)
10th Conv. (3, 3, 4) (192, 96, 8)
5th Upsampling (384, 192, 8)
11th Conv. (3, 3, 4) (796, 384, 16)
6th Upsampling (796, 384, 2)
12th Conv. (3, 3, 2)
(Decomposed field)

(786, 384, 2)

Table 3
Hyperparameters used for the MD-CNN-AE.

Parameter Value

CNN filter size 3 × 3
CNN pooling size 2 × 2
Number of layers 28
Number of data 500 000
Percentage of training data 80%
Time interval of data 0.25
Number of epochs 2000
Batch size 100
Optimizer for network Adam
Learning rate of Adam 0.001
𝛽1 of Adam 0.9
𝛽2 of Adam 0.999
Learning rate decay of Adam 0

fields depending on the number of decomposition modes is described
in Section 3.1. Second, in Section 3.2, the neural network’s decompo-
sition accuracy is compared to the accuracy of a conventional method,
i.e., flow fields reproduced by POD. These are described using the
mean squared error (MSE). This is because, unlike metrics such as the
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Fig. 3. Mean squared errors over all time steps between the reconstructed and
simulated velocity fields for 2, 12, and 24 modes.

Fig. 4. Mean squared errors over all time steps between the reconstructed and
simulated vorticity for 2, 12, and 24 modes.

structural similarity index (SSIM) [31], MSE does not have a weight
parameter that can be freely set by the evaluator, so the results will
not be biased or exaggerated.

3.1. Mode decomposition performance of the MD-CNN-AE

The dimensionality reduction performance of the MD-CNN-AE is
investigated for several numbers of modes and a varying distance 𝑙.
The distances 𝑙𝑇 𝑟𝑎𝑖𝑛 between the centers of the square cylinders of the
training data, and the distances 𝑙𝑇 𝑒𝑠𝑡 between the centers of the square
cylinders of the test data are computed as follows

𝑙𝑇 𝑟𝑎𝑖𝑛 = 1 + 0.0625𝑛 (𝑛 = 0, 1,… , 49), (7)

𝑙𝑇 𝑒𝑠𝑡 = 1.125 + 0.3125𝑛 (𝑛 = 0, 1,… , 9). (8)

Fig. 3 shows the MSE of velocities over all time steps for a varying
distance 𝑙 and different numbers of modes. Fig. 4 shows the mean
squared error of vorticities over all time steps for a varying distance
𝑙 and different numbers of modes. Generally, increasing the number of
modes results in lower MSEs. Averaging the MSE for all variations of 𝑙
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Fig. 5. Mean variance of the velocity fields of all test cases and training cases.

yields a reduction by 75% when the number of modes is increased from
2 to 12, and a reduction of another 50% when the number of modes
is increased from 12 to 24. When varying 𝑙, the same general trend is
observed for all numbers of modes. That is, the largest errors occur near
𝑙 = 2.375. Relatively low MSEs are observed for 𝑙 = 1.125, followed by
a steady increase until 𝑙 = 2.375, an abrupt decrease at 𝑙 = 2.6875, and
again an increase until 𝑙 = 3.9375.

Fig. 5 shows the mean variance �̄� 𝑣𝑎𝑟 of the velocity fields, computed
based on the variance 𝑼 𝑙

𝑣𝑎𝑟 averaged for each simulation case according
to

𝑼 𝑙
𝑣𝑎𝑟 =

∑

𝑡∈𝑁

(

𝑼 𝑙
𝑡 − 𝑼 𝑙

)2

𝑁
, (9)

where 𝑼 𝑙
𝑡 indicates the velocity matrix [𝑢, 𝑣] of a snapshot at time 𝑡,

𝑁 = 10,000 the number of snapshots per case, and 𝑼 𝑙 the average of
the velocity matrices of all snapshots of a case. In general, the smaller
�̄� 𝑣𝑎𝑟 is, the more the low-frequency structure becomes dominant in the
flow field, which improves the flow reconstruction accuracy by MD-
CNN-AE. The case 𝑙 = 1.125 has the largest variances, but relatively low
MSEs for all modes. The reason for that is explained with the help of
Figs. 6 and 7. The figures show the velocity components 𝑢 and 𝑣 of the
simulation results of 10 test cases and the reconstruction results using
the MD-CNN-AE with 2, 12, and 24 modes. The large variance comes
from the fact that 𝑙 = 1.125 is the only case with strongly alternating
low-frequency vortices. The square cylinders are so close to each other
that they nearly act as a single obstacle. Predicting such low-frequency
vortices seems to be a relatively easy task for the MD-CNN-AE since the
vortex shedding is visible even when solely using 2 modes.

The variance in Fig. 5 decreases from 𝑙 = 1.125 to 𝑙 = 2.375, but is
generally still high, compared to the cases with 𝑙 > 2.375. Figs. 6 and
7 indicate that although 𝑙 increases, the separation region behind the
square cylinders is still mainly characterized by low-frequency vortex
shedding. However, with an increasing distance between the square
cylinders, high-frequency structures start to develop in the flow field.
These small scale vortices make predictions of the main flow structures
more and more challenging and the MD-CNN-AE trained with 2 or 12
modes struggles to reproduce the flow field correctly. Only training
with 24 modes yields an accurate reproduction. This is essentially
visible for 𝑙 = 2.375 where vortices with high-frequency shedding start
to evolve behind each of the square cylinders.

Between 𝑙 = 2.375 and 𝑙 = 2.6875, Fig. 5 shows an abrupt change
in the mean variance. This is due to the sudden disappearance of
high-frequency structures from the flow field. Fig. 3 also shows the
significant impact of the reconstruction of the velocity field due to the
sudden change in the frequency structure of the flow field. The flow
fields from 𝑙 = 2.6875 to 𝑙 = 3.9375 have separated vortex shedding
behind each of the square cylinders in common. Especially the flow
fields from 𝑙 = 2.6875 to 𝑙 = 3.625 are similar, which explains the
generally low mean variance of these cases shown in Fig. 5. Although
the MD-CNN-AE trained with 2 modes is still not capable of reproducing
the main flow features correctly, predictions based on 12 and 24 modes
manage to reconstruct the flow fields.
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Fig. 6. The velocity component 𝑢 of the instantaneous flow fields with various distances between the center of the square cylinders at 𝑡 = 1, 350 s. The simulated and reconstructed
flow fields by the MD-CNN-AE are juxtaposed.
The tide turns for the case with 𝑙 = 3.9375. Whereas the cases
from 𝑙 = 2.6875 to 𝑙 = 3.625 are characterized by synchronous vortex
shedding behind the two square cylinders, the flow for 𝑙 = 3.9375
reveals asynchronous shedding. The MD-CNN-AE trained with two
modes interprets this as a an averaged flow, as shown in Figs. 6 and
7. Yet, predictions based on 12 and 24 modes seem not to have these
difficulties. However, the singularity of this case yields an increased
variance in Fig. 5.

The previously presented results show that the cases 𝑙 = 1.125, 𝑙 =
2.3750, 𝑙 = 2.6875, and 𝑙 = 3.9375 play the major role for reconstructing
the flow fields in the current robustness study. They are investigated
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in detail in Fig. 8, which shows the time-averaged streamwise veloc-
ity along the centerline between the square cylinders, simulated and
reconstructed for 2, 12, and 24 modes and each of the four cases.

For all variations of 𝑙, the lowest errors occur when rebuilding the
flow fields based on 24 modes. The MD-CNN-AE trained with 12 modes
faces challenges in the central part of the centerlines for 𝑙 = 1.125,
𝑙 = 2.6875, and 𝑙 = 3.9375. This indicates inaccurate predictions in the
wake regions behind the square cylinders. Predictions based on 2 modes
show less deviations in these regions compared to those based on 12
modes. This means that predictions with 2 modes are already close to
reproductions of the time-averaged flow field. Reproducing the flow for
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Fig. 7. The velocity component 𝑣 of the instantaneous flow fields with various distances between the square cylinders at 𝑡 = 1, 350 s. The simulated and reconstructed flow fields
by the MD-CNN-AE are juxtaposed.
𝑙 = 3.9375 shows inaccuracies with all numbers of modes. This again
stresses the difficulty of predicting temporally high-frequency flow
structures with two asynchronous von-Karman vortices that interfere
with each other at the centerline.

3.2. Mode decomposition performance of the MD-CNN-AE compared to
POD

In this section, the mode decomposition accuracy of the proposed
method (MD-CNN-AE) is compared to a conventional method (POD).
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The comparison is carried out for 24 modes to reconstruct the flow field
with sufficient accuracy. The test data is the same as in Section 3.1.

Fig. 9 shows the MSE for each method compared to the simulation
results. In all cases, the MSE of the reconstructions based on POD is
larger than the one based on the MD-CNN-AE. The mean MSE of the
POD results is 3.61 × 10−3, compared to 2.71 × 10−3 in case of the
MD-CNN-AE, yielding a deviation of nearly 25%.

Similarly, Fig. 10 shows the MSE for each method compared to the
vorticity results. In all cases, the MSE of the reconstructions based on
POD is larger than the one based on the MD-CNN-AE. The mean MSE
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Fig. 8. Mean streamwise velocities along the centerline for 𝑙 = 1.125, 𝑙 = 2.3750,
𝑙 = 2.6875, and 𝑙 = 3.9375, simulated and reconstructed for 2, 12, and 24 modes.
250
Fig. 9. Mean squared errors of reconstructed velocities by the MD-CNN-AE and POD
compared to the reference simulation data.

Fig. 10. Mean squared errors of reconstructed vorticities by the MD-CNN-AE and POD
compared to the reference simulation data.

of the POD results is 5.04 × 10−2, compared to 3.83 × 10−2 in case of the
MD-CNN-AE, yielding again a deviation of nearly 25%.

Fig. 11 shows the deviation of the streamwise components of the
time-averaged centerline velocity reconstructed by the MD-CNN-AE
and POD to the simulation results. For 𝑙 = 1.125, 𝑙 = 2.375, and
𝑙 = 2.6875, the reconstructed velocities of both reduced order methods
show only minor differences to the simulation results. In contrast, the
MD-CNN-AE has a clearly better accuracy than POD for 𝑙 = 3.9375.

Figs. 12 and 13 show the time-averaged squared errors between the
simulation results and the velocity fields reconstructed by the MD-CNN-
AE and POD for 𝑙 = 1.125, 𝑙 = 2.3750, 𝑙 = 2.6875, and 𝑙 = 3.9375. For
𝑙 = 1.125. The 𝑢-predictions based on the POD show large errors in the
vicinity of the squared cylinders, and the 𝑣-predictions show inaccu-
racies in the complete wake region behind the obstacles. In contrast,
the predictions by the MD-CNN-AE of both velocity components are
characterized by low errors. This again indicates that the reconstruction
of the low-frequency structures behind two closely located squared
cylinders is a suitable task for the neural network.

For 𝑙 = 2.3750, reconstructing the flow fields of both velocity com-
ponents becomes more challenging for both reduced order methods.
However, the reconstructions based on POD have generally higher er-
rors than those of the MD-CNN-AE, especially in the two near-wall wake
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Fig. 11. Mean streamwise velocities along the centerline.
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regions behind the obstacles which are dominated by high-frequency
vortex shedding.

Predictions for 𝑙 = 2.6875 were already attributed as the least
challenging case with the lowest variance in Fig. 5 and the lowest MSEs
in Figs. 3 and 9. Therefore, it is not surprising that both reduced order
models have low errors when reconstructing both velocity components
in Figs. 12 and 13.

For 𝑙 = 3.9375, the only case with asynchronous vortex shedding, the
errors for both velocity components tend to increase again. However,
because the MD-CNN-AE is better at reconstructing high-frequency
components, regions with large errors are less frequent compared to
the errors illustrated for the POD.

Fig. 14 shows the time-averaged squared errors between the simu-
lation results and the vorticity fields reconstructed by the MD-CNN-AE
and POD for 𝑙 = 1.125, 𝑙 = 2.3750, 𝑙 = 2.6875, and 𝑙 = 3.9375. These
results are consistent with the trend in the accuracy of the velocity field.

3.3. Computational costs of the MD-CNN-AE compared to POD

The implementation costs were compared between MD-CNN-AE and
POD. It took 980 h using 11 nodes to run the 40-case simulation used
for training data. Training MD-CNN-AE using these data took 32 h using
6250 nodes. On the other hand, flow field decomposition using POD
took 3.5 h. There is a trade-off between accuracy and implementation
cost.

4. Summary and conclusions

In this study, the robustness of a modal decomposition unsuper-
vised neural network (MD-CNN-AE) applicable to large-scale machine
learning-based reduced modeling of two-dimensional flow fields at
𝑅𝑒 = 100 is investigated. The flow domain is characterized by two
square cylinders with a varying distance 𝑙.

First, neural network-based reconstructions based on 2, 12, and 24
modes have been investigated. For the predictions based on 2 modes,
neither high-frequency waves, nor low-frequency flow structures are
reproduced correctly. In addition, the velocity fields behind the square
cylinders are not smooth and characterized by noise. In case of 12
modes, the low-frequency waves are reproduced much better than in
the previous case, but still challenging from 𝑙 = 1.125 to 𝑙 = 2.375. From
𝑙 = 2.68875 to 𝑙 = 3.9375 the high-frequency recirculation zones in the
vicinity of each square cylinders are captured well. However, parts of
the high-frequency waves cannot fully be reproduced. To improve this,
24 modes were used for the reconstruction, which provided a smoother
velocity field that reproduced all relevant low and high frequencies for
all variations of 𝑙.

Second, neural network-based and POD-based reconstructions for
24 modes have been compared to flow fields computed by numerical
simulations. For all variations of 𝑙, the MSE of the POD reconstructions
is higher than the MSE of the flow fields reproduced by the MD-CNN-
AE. Analyzing the L2 error of the flow fields for 𝑙 = 1.125, 𝑙 = 2.375,
𝑙 = 2.6875, and 𝑙 = 3.9375 yields a superiority of the MD-CNN-AE over
POD, especially in the two near-wall wake regions behind the obstacles
which are dominated by high-frequency vortex shedding.

These results suggest that the proposed method is applicable to
general flow phenomena that have unknown flow characteristics (for
example, flows that occur when the shape, location, and number of
objects placed in the fluid are changed or when the Reynolds number is
changed). The method proposed in this paper was developed through
the Joint Laboratory for Extreme Scale Computing (JLESC) project
‘‘Deep Neural Networks for CFD Simulations’’3 through a collaboration
between researchers from the RIKEN Center for Computational Science
(R-CCS) and the Jülich Supercomputing Centre (JSC).

3 https://jlesc.github.io/projects/dnn_cfd/

https://jlesc.github.io/projects/dnn_cfd/
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Fig. 12. Comparison of the time-averaged L2 error between reconstructed velocity by the MD-CNN-AE and POD, and simulation results. The flow fields are snapshots of 𝐮 at t =
1,350 s.

Fig. 13. Comparison of the time-averaged L2 error between reconstructed velocity fields by the MD-CNN-AE and POD, and simulation results. The flow fields are snapshots of 𝐯
at t = 1,350 s.
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Fig. 14. Comparison of the time-averaged L2 error between reconstructed vorticity fields by the MD-CNN-AE and POD, and simulation results. The vorticity fields are snapshots
at t = 1,350 s.
In future research, the nonlinear order reduction modeling method
will be applied to more complex flow fields, such as flows around ve-
hicle bodies. Future challenges include examining robustness in three-
dimensional flow fields and at higher Reynolds numbers.
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