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Abstract 
Naturalistic paradigms, such as watching movies during functional magnetic resonance 

imaging (fMRI), are thought to prompt the emotional and cognitive processes typically elicited 

in real life situations. Therefore, naturalistic viewing (NV) holds great potential for studying 

individual differences. However, in how far NV elicits similarity within and between subjects 

on a network level, particularly depending on emotions portrayed in movies, is currently 

unknown. 
We used the studyforrest dataset to investigate the inter- and intra-subject similarity in network 

functional connectivity (NFC) of 14 meta-analytically defined networks across a full narrative, 

audio-visual movie split into 8 consecutive movie segments. We characterized the movie 

segments by valence and arousal portrayed within the sequences, before utilizing a  linear 

mixed model to analyze which factors explain inter- and intra-subject similarity. 
Our results showed that the model best explaining inter-subject similarity comprised network, 

movie segment, valence and a movie segment by valence interaction. Intra-subject similarity 

was influenced significantly by the same factors and an additional three-way interaction 

between movie segment, valence and arousal. 
Overall, inter- and intra-subject similarity in NFC were sensitive to the ongoing narrative and 

emotions in the movie. Lowest similarity both within and between subjects was seen in the 

emotional regulation network and networks associated with long-term memory processing, 

which might be explained by specific features and content of the movie. We conclude that 

detailed characterization of movie features is crucial for NV research. 
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1. Introduction 
 
Understanding how individual differences in brain architecture shape personality, cognitive 

abilities and socio-affective traits is a constant endeavor in cognitive neuroscience. The 

growing interest in individual differences research has led to the development of new 

paradigms that may allow for novel insights into individual brain architecture. Naturalistic 

viewing (NV) is a promising tool for designing more ecologically valid fMRI studies, thus 

providing the opportunity to measure individual differences under beneficial circumstances 

(Vanderwal et al., 2017). However, the potential and limitations of naturalistic viewing for the 

study of individual differences are not yet fully understood. 
Past fMRI research mainly followed one of two approaches to uncover the brain’s functional 

architecture, each of which comes with their own strengths and constraints. Traditionally, task-

based fMRI has been essential for studying the neural correlates of cognition based on 

paradigms designed to target specific cognitive processes in a highly controlled environment 

(Dosenbach et al., 2006). However, the highly controlled nature of task fMRI leads to rather 

artificial participant experiences and thus sacrifices ecological validity for precision (Kingstone, 

Smilek, Eastwood, 2008; Delgado-Herrera, Reyes-Aguilar, Giordano, 2021; Reggente et al., 

2018; van Atteveldt et al., 2018). Alternatively, the intrinsic functional architecture of the brain 

has been studied using resting state (RS) fMRI, in which participants are scanned without any 

task or external stimulus. However, in this paradigm, subjects are left to follow their own 

thoughts, which impacts brain states in a way that is difficult to control (Gonzalez-Castillo, 

Kam, Hoy & Bandettini, 2021).  
While both task and RS-fMRI possess their strengths, their constraints have led to the 

development of NV paradigms as an alternative for studying individual differences in 

neuroimaging research. In NV, subjects are presented with movies or movie segments while 

undergoing MRI scanning, without any additional task instructions beyond attending to the 

movie. Movies are assumed to induce brain states similar to those evoked in real life 

situations, because movies are likewise complex, dynamic and continuous. NV thus aims to 

deliver ecologically valid stimulation to the brain as far as this is possible within the confines 

of a MR scanner. Compared to task-based fMRI, participants’ brain states are less constrained 

while experiencing a less artificial situation during NV (Finn et al., 2017). In combination with 

advantages of participant engagement and compliance, this additionally creates interest in 

movie fMRI for clinical applications (Eickhoff, Milham & Vanderwal, 2020) or specific 

populations such as children (Vanderwal et al., 2019). Simultaneously, movies offer rich, multi-

modal stimulation that induces brain states in a more constrained way than RS-fMRI does. 
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Therefore, movies allow for employing the whole range of analyses that are typical for task 

fMRI and RS-fMRI (Spiers & Maguire, 2007; Vanderwal et al., 2019; Nastase et al., 2019).  
NV can induce high inter- and intra-subject correlations in activity time courses of various 

cortices (Hasson et al., 2004), which are dependent on features and content of the movie 

stimulus (Hasson et al., 2008; Lerner, Honey, Silbert & Hasson, 2011). These inter- and intra-

subject correlations in brain activity are affected by the narrative coherence of a movie 

stimulus, as backward presentation of a movie decreases these correlations (Hasson, Malach 

& Heeger, 2009). Moreover, movie stimuli can be edited to influence similarity as shown by 

higher inter-subject correlations in professionally produced movies than unedited, real-life 

movies (Hasson, Malach & Heeger, 2009). A direct comparison between different movie 

stimuli and RS indicated that a complex movie with social interactions yielded higher inter-

subject correlations compared to an abstract, non-verbal movie, which in turn led to higher 

inter-subject correlations than RS (Vanderwal, Kelly, Eilbott, Mayes, & Castellanos, 2015).  
Moreover, movies are effective in eliciting emotions, including complex and differentiated 

emotional states (Gross & Levenson, 1995; Westermann et al., 1996; Schaefer et al., 2010; 

Adolphs et al., 2016). Emotions might be induced using various features in the movie, such 

as facial expressions, gestures, body postures, speech characteristics or context cues (Skerry 

and Saxe, 2014). In movies with social content, the emotions portrayed by characters in the 

movie are important cues for eliciting emotions in viewers (Labs et al., 2019, Lettieri et al., 

2019), making portrayed emotions an important stimulus feature in NV studies. 
According to Finn and colleagues (2017), a major argument why movie fMRI might be an 

excellent paradigm for studying individual differences is the assumed beneficial ratio of inter- 

to intra-subject correlation induced by movies: On the one hand movies represent a common 

cognitive reference frame for subjects’ brain states, thus decreasing irrelevant inter-subject 

variability, while on the other hand retaining a subject's most identifying features. This is 

denoted by low intra-subject variability, i.e. subjects being similar to themselves, for example, 

over the course of watching a movie or when watching the same movie in two separate 

sessions (Finn et al., 2017). Concordantly, a study by Vanderwal and colleagues (2017) 

showed that movies overall significantly decreased both inter- and intra-subject variability on 

a whole-brain level compared to RS, thus lending support to the idea that NV might preserve 

or even enhance individual differences in functional connectivity (Vanderwal, et al. 2017). A 

recent study found that influences of NV on inter- and intra-subject similarity in NFC is 

dependent on the brain network and stimulus (Kröll et al., 2023), however, not all factors 

contributing to the effects of movies on inter- and intra-subject similarity of NFC have been 

investigated. For example, the impact of specific content, such as emotions portrayed in 

movies, is still unknown. 
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In contemporary neuroscience, functional networks consisting of distributed but interacting 

brain regions are often viewed as the foundation of cognition functions (Eickhoff and Grefkes, 

2011), thus allowing for an interpretation of interactions between various brain regions with 

respect to specific cognitive domains. Given that movies are complex and multimodal stimuli 

that elicit widely distributed brain activity, a network perspective might help to untangle the 

effect of movies on specific cognitive functions. Specifically, studying the functional 

connectivity between the brain regions constituting these networks (i.e. network functional 

connectivity, NFC) might grant insights into the effects of NV on brain function. While there 

are various methods to define functional networks (e.g. Fox et al., 2005; Power et al., 2011; 

Smith et al., 2009; Yeo et al., 2011; Schaefer et al., 2018, Pervaiz et al., 2020), one approach 

that instrumentalizes the body of existing knowledge about specific cognitive processes is the 

use of meta-analysis. Coordinate-based meta-analyses of neuroimaging data (e.g. activation 

likelihood estimation; Eickhoff et al., 2009) identify brain locations that are consistently 

activated during cognitive tasks across various studies. Converging results from many studies 

using different tasks to study the same cognitive function leads to a robust mapping of 

function-related brain coordinates (Eickhoff et al., 2012). In turn, reliably co-activated regions 

can be assumed to constitute a network that is engaged with the specific cognitive function 

(Fox et al., 2015). Various meta-analytical networks have been characterized, covering 

different psychological domains, and have been proven useful for gaining insight into the role 

of brain regions in a network perspective (Igelström & Graziano, 2017), robustly assessing the 

neural basis of cognitive functions (Gross, 2015; Etkin, Büchel & Gross, 2015; Binder & Desai, 

2011, Margulies et al., 2016) and therefore laying the ground for further experimental work 

(Morawetz et al., 2017). Studies using meta-analytical networks to predict personality scores 

(Nostro et al., 2018) or classify participants according to their mental health status and age 

(Pläschke et al., 2017) yielded better or at least similar results to using whole-brain 

connectivity (Nostro et al., 2018), while improving interpretability. Therefore, meta-analytical 

networks provide an excellent basis for studying individual variability in different cognitive 

systems.  
With respect to movie fMRI, Vanderwal and colleagues (2017) showed that the effect of 

movies is differentially distributed across the brain, with lower inter- than intra-subject 

variability in unimodal regions and higher inter- than intra-subject variability in heteromodal 

regions. However, a concrete comparison of these variabilities on the level of network 

functional connectivity (NFC) has rarely been done (but see Kröll et al., 2023). Furthermore, 

it is yet unclear which features of a movie stimulus influence inter- and intra-subject similarity. 

Emotions might play an important role in affecting similarity within and between subjects and 

might be best studied in a full narrative movie, which combines a long, overarching narrative 

and numerous distinct, individual scenes. The changing content and wide range of emotional 
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scenes present within this narrative warrants a more detailed characterisation of the stimulus 

and its segments. 
To fill this gap, the present study investigates inter- and intra-subject similarity in NFC over 

the course of a full narrative movie. In a first step, we compared different segments of the 

movie stimulus with regard to their portrayed valence and arousal, evincing differences in 

emotional content. Using linear mixed models (LMM), we analyzed how different factors, such 

as the narrative of the movie and portrayed valence and arousal, affect inter- and intra-subject 

similarity in NFC across 14 meta-analytically defined networks. 
We expected to see differences in inter- and intra-subject similarity that are network-

dependent, change over the course of the full narrative movie and are influenced by valence 

and arousal portrayed within the movie.  
Delineating the factors influencing inter- and intra-subject similarity is an essential next step 

in NV research. While the  number of available datasets is steadily increasing, there is still no 

systematic framework guiding the choice of stimuli due to a lack of studies uncovering the 

influence of specific stimulus features on brain measures (Grall & Finn, 2022). Using movie 

watching precisely and effectively necessitates a better understanding of which stimuli are 

best suited for elucidating which research questions (Eickhoff, Milham & Vanderwal, 2020). 

This study sheds light on the effects on inter- and intra-subject similarity in NFC of a movie 

stimulus that is unique in its length and overarching narrative. 

 

2. Methods 
2.1. Sample 
This sample consisted of 15 native German-speaking participants (6 females, range 21-39 

years) (Hanke et al., 2016). One subject, which we excluded, was an outlier in the intra-subject 

correlation analysis, leading to a sample size of 14 (6 females, age range 21-39 years. Please 

note that mean age cannot be reported, because only age ranges were reported for each 

participant). The Ethics committee of Otto-Von-Guericke University, Germany approved 

acquisition of the data in the “studyforrest” project. For a more detailed description of the 

sample, see Sengupta et al. (2016). The full dataset can be found under: 

https://github.com/psychoinformatics-de/studyforrest-data-phase2. A list of subjects can be 

found in the supplementary table S1. 

 

2.2 MRI Data & preprocessing 
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fMRI data acquisition took place in a single session which included a short break in the middle. To 

keep the stimulus at a length of two hours, some scenes were cut. The movie stimulus represents 

a full narrative movie, as only scenes that were less relevant to the plot were cut, thus preserving 

the overarching story. For the purpose of data acquisition, the movie stimulus was separated 

into 8 segments of approximately 15 minutes each, taking scene boundaries into 

consideration. This lead to an unequal number of volumes acquired per segment, which were 

451, 441, 438, 488, 462, 439, 542, and 338 for segments 1 – 8 respectively (see Hanke et al., 

2014 for details and code on movie segment creation). The movie segments were shown in 

chronological order. For each segment, T2*-weighted echo-planar images (gradient-echo, 2 s 

repetition time (TR), 30 ms echo time, 90° flip angle, 1943 Hz/Px bandwidth, parallel 

acquisition with sensitivity encoding (SENSE) reduction factor 2, 35 axial slices, 3.0mm slice 

thickness, 80 x 80 voxels (3.0 x 3.0mm) in-plane resolution, 240 x 240 mm field-of-view, 

anterior-to-posterior phase encoding direction in ascending order, 10% inter-slice gap, whole-

brain coverage) were acquired using a whole-body 3 Tesla Philips Achieva dStream MRI 

scanner equipped with a 32 channel head coil.  
All downloaded data were minimally preprocessed as described in Hanke et al. (2016). In 

short, preprocessing steps included defacing, motion correction, reslicing and data 

interpolation using in-house codes that utilize the FSL toolkit. All codes are openly available 

under: https://github.com/psychoinformatics-de/studyforrest-data-aligned/tree/master/code. 

For precise information about observed motion and data quality analyses see Hanke et al. 

(2016). For this study, the native fMRI data were brought into MNI space using FSL’s 

applywarp function for subsequent NFC extraction. 

 

2.3 Valence and Arousal measures 
To characterize the movie segments with regards to the portrayed valence and arousal, we 

used the openly available data from Labs et al. (2015). This dataset contains annotations of 

portrayed emotions in the “Forrest Gump” movie stimulus used in the “studyforrest” dataset.  
A group of observers (n=9, German female university students) were asked to evaluate 

scenes of the movie in terms of valence (“positive” or “negative”) and arousal (“high” or “low”) 

portrayed by the movie characters. All scenes were presented in random order to allow 

observers to focus on current indicators of portrayed emotions without being influenced by, 

for example, the conveyed mood of the movie plot. To evaluate the consistency of evaluations 

between observers, Labs and colleagues calculated the inter-observer agreement (IOA). The 

IOA value describes the portion of observers indicating the presence of a specific attribute in 

a scene (Labs et al, 2015). As arousal and valence were measured on a bipolar scale 

(“positive” of “negative” valende, “low” or “high” arousal present), the timeseries of these 
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attributes were calculated as the difference between the IOA timeseries of both expressions. 

That is, the IOA timeseries of arousal was calculated by subtracting the IOA timeseries of low 

arousal segments from the IOA timeseries of high arousal segments (Labs et al., 2015). The 

IOA is expressed as a value between 1 and -1, with “1” indicating perfect observer agreement 

regarding high arousal (or positive valence, respectively) and “-1” indicating perfect observer 

agreement regarding low arousal (or negative valence, respectively). IOAs were reported as 

a time series of the movie in correct order downsampled to 2 seconds, corresponding to the 

sampling rate of the fMRI data. We used code published by Lettieri et al. 

2019  (https://osf.io/tzpdf/) to divide the IOA time series according to 8 movie segments for 

subsequent analyses.  

 

2.4 Inter- and intra-subject similarity in functional networks 
To investigate effects on a network level, we used 14 networks defined as sets of peak 

coordinates in different meta-analyses. These included the autobiographical memory (AM) 

network (Spreng, Mar & Kim, 2008), cognitive attention control (CogAC) network (Cieslik et 

al., 2015), extended multiple demand network (eMDN) (Camilleri et al., 2018), emotional 

scene and face processing (EmoSF) network (Sabatinelli et al., 2011), empathy network 

(Bzdok et al., 2012), theory of mind (ToM) network (Bzdok et al., 2012), emotion regulation 

(ER) network (Buhle et al., 2014), extended socio-affective default network (eSAD) (Amft et 

al., 2015), mirror neuron system (MNS) network (Caspers et al., 2010), motor network (Witt, 

Meyerand, & Laird, 2008), reward (Rew) network (Liu et al., 2011), semantic memory (SM) 

network (Binder et al., 2009), vigilant attention (VigAtt) network (Langner & Eickhoff, 2013), 

and the working memory (WM) network (Rottschy et al., 2012). A more detailed description of 

these networks are reported in the supplements (supplementary material S2). For each meta-

analytical network, nodes were created by placing 6mm spheres around the peak coordinates 

(see supplementary material S3 for an overview of the peak coordinates and S4 for a figure 

of all nodes of all networks). The functional connectome of a given network was created using 

in-house MATLAB R2017a (The Mathworks Inc., 2017) code which computes the pairwise 

Pearson correlation between all nodes for each segment and each participant. This resulted 

in 1680 functional network connectomes (15 participants x 8 segments x 14 networks) saved 

as N-by-N matrices with N being the number of nodes.  
To keep in line with previous studies (Vanderwal et al., 2015; Vanderwal et al., 2017; Finn et 

al., 2017; Nastase et al., 2019), we operationalized the inter- and intra-subject similarity as the 

Pearson correlation coefficients between functional connectomes within and between 

subjects. Inter- and intra-subject similarity were computed per network, segment and subject 

as depicted in Figure 1. All computations are based on the unique connections between nodes 
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(i.e. the lower triangle of the NFC matrix) and exclude all auto-correlations. For inter-subject 

similarity, we first computed the correlations between the NFC of one subject and all other 

subjects. After Fisher Z-transformation of the correlation coefficient, they were averaged and 

re-transformed, resulting in one value representing inter-subject similarity for the respective 

subject in the given segment and network. For calculating intra-subject similarity of a given 

subject and segment, we computed the correlations between NFCs of this segment and every 

other segment of the subject. The correlation values were Fisher’s z-transformed, averaged, 

and reverted to r-values, resulting in one value representing intra-subject similarity for the 

respective subject in the given segment and network. Both inter- and intra-subject similarity 

were calculated based on Pearson correlation coefficients.  
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Figure 1: Calculation of inter- and intra-subject similarity. For each subject, functional connectomes 

were computed for all 14 networks in each of the 8 movie segments. Inter-subject similarity is assessed 

by calculating the average correlations between subjects within the same movie segments. Intra-subject 

similarity is assessed by calculating the average correlation between movie segments within the same 
subject. 
 

2.5 Statistical analyses 
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To investigate whether portrayed emotions are different across movie segments, we 

conducted a one-way ANOVA for each measure. Here, IOA values were used as independent 

variables with the movie segments as fixed factors. Post-hoc t-tests are reported with 

Bonferroni-adjusted p-values.  
To test whether inter- or intra-subject similarity differ across networks depending on movie 

segments and portrayed emotions, we applied linear mixed models (LMM) using the 

statsmodels python package (https://www.statsmodels.org/stable/mixed_linear.html). 

Specifically, we created different random intercept models by choosing network, movie 

segment, arousal and valence as possible fixed effects, subject identity as a random effect, 

and inter- or intra-subject similarity as the dependent variable. We chose subject identity as a 

random effect, because participants are the sampling unit of interest and contribute repeatedly 

to the NFC measures across all movie segments. We model individual differences by 

assuming different random intercepts for each subject, but no individual random slopes, 

because a simpler model structure was warranted by our data. Network was chosen as a fixed 

effect to test which networks are associated with changes in inter- or intra-subject similarity 

induced by NV. It was included as a categorical factor with 14 levels. Movie segment was 

chosen as a fixed effect to test for an effect of the length and complexity of a full-narrative 

movie. Portrayed valence and arousal were chosen as fixed effects to represent the emotional 

content of the full-narrative movie, testing if emotions portrayed in a movie affect inter- or intra-

subject similarity in NFC. Models were generated using maximum likelihood to include all 

possible models, that is, each unique combination of one to four fixed effects and their 

respective interactions, resulting in 2128 models that were compared each for inter- and intra-

subject similarity. The model best fitting our data was selected using Bayesian information 

criterion (BIC, Schwarz, 1978) and used to calculate the parameter estimates for each effect. 

To test whether a specific network had a significant influence on inter- or intra-subject 

similarity, we created a “mean network” representing the mean inter- or intra-subject similarity 

values across all networks that we used as a reference category to compare all other networks 

against. P-values were obtained using Wald tests of the best models. 

3. Results 
Emotions and an overarching narrative are hallmark features of conventional Hollywood 

movies, which are frequently employed in NV research because of their engaging and 

complex nature. However, most NV studies use only shorter clips from these movies, 

essentially excluding effects of the ongoing narrative. Therefore, is it not yet clear how these 

features might impact inter- and intra-subject similarity in NFC in a full narrative movie. Here, 
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we investigated portrayed valence and arousal across a full narrative movie and how these 

factors contribute to explaining inter- and intra-subject similarity in NFC in 14 networks. 

3.1 Movie segments and portrayed emotions 
We used a previously reported description (Lab et al., 2019) of portrayed valence and arousal 

for comparisons between the emotional content of different movie segments. Our results 

showed that movie segments differed in the direction (i.e.: positive/negative valence ; high/low 

arousal) and the extent of agreement between observers concerning these measures (Figure 

2). Figure 2 shows average IOA values of each movie segment and reveals large differences 

in the evaluation of valence and arousal across movie segments. For segments 1, 6, 7, and 8 

IOA values indicate consistency in portrayed positive valence, while the segments 4 and 5 

portrayed negative valence. Segment 2 and 3 showed little consistency in the evaluation of 

portrayed valence, as IOA values are close to zero. Concordantly, the ANOVA on the valence 

IOA values resulted in a significant main effect of segment (F(7,3534) = 45.879, P < .001), 

and Bonferroni-corrected post-hoc testing revealed significant differences between the 

consecutive segments 1 and 2 (t = 3.378, p = .021), 3 and 4 (t = 7.236, p < .001), 4 and 5 (t = 

-3.131, p = .049), 5 and 6 (t = -8.519, p < .001) and 7 and 8 (t = 3.552, p = .011). Segment 4 

had the strongest agreement on negative valence between observers, while segment 7 

showed the strongest agreement on positive valence between observers. Figure 2 further 

shows that segments 2 and 4 portrayed high arousal, while the other segments portrayed low 

arousal. The ANOVA on arousal IOA values showed a significant main effect of segment as 

well (F(7, 3534) = 15.479, p < .001). Bonferroni-corrected post-hoc testing revealed significant 

differences between consecutive segments 1 and 2 (t = -13.448, p < .001), 2 and 3 (t = 10.397, 

p .001), 3 and 4 (t = -14.628, p < .001) and 4 and 5 (t = 10.617, p < .001).  
Given how much portrayed emotions and the narrative are intertwined, our results are best 

interpreted in the light of the content of the movie segments. Segment 1 spans the introduction 

of Forrest Gump and scenes from his childhood, containing both positive (caring mother, close 

friendship with neighbor girl Jenny) and negative (walking impairments, bullying) elements. 

Segment 2 was marked by low IOA in both valence and arousal, showing less agreement 

between observers on the portrayed emotions in this segment. During this segment the movie 

shows Forrest’s highschool and college time, addressing athletic successes and first dating 

experiences. Low IOA values continue in the valence dimension in segment 3, whereas 

observers agreed more strongly on low arousal being portrayed here. Here, the movie shows 

Forrest joining the army, reuniting with Jenny in a nightclub where she works as a dancer, and 

being deployed in the Vietnam war. Segment 4 prominently features a different pattern than 

any other segment: observers agreed that movie characters displayed high arousal and low 

valence during this segment. This can likely be attributed to the war scenes involving an 
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ambush in Vietnam causing Forrest’s best friend’s death, and following scenes in a military 

hospital, although the segment also contains Forrest receiving the Medal of Honor and 

speaking at an anti-war rally in front of the Pentagon. Segment 5 is marked by lower IOA 

values indicating some negative valence and low arousal, featuring the Black Panther 

movement, Forrest’s ping pong career and reunions with friends Jenny and Lt. Dan. The last 

three segments again display a pattern of higher agreement between observers on positive 

valence and low arousal, when the movie spans Forrest’s successful shrimp fishing business, 

two episodes of living happily with Jenny, a three-year cross-country marathon, Forrest 

meeting his son, Jenny’s death and the ending of the movie. 

 

 
Figure 2. Results of the ANOVA on valence and arousal inter-observer agreement (IOA) in each movie 

segment. (A) Valence and arousal IOA across movie segments (portrayed valence: purple and arousal: 

orange).  Positive IOA values indicate that observers agreed on the portrayal of positive valence and 

high arousal, while negative IOA values indicate that observers agreed on the portrayal of negative 
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valence and low arousal. The amount of deviation from zero in IOA values corresponds to the strength 

of agreement between observers. For each movie segment, the IOA values are averaged across the 

entire segment. (B) Post-hoc results of the ANOVA on valence (left) and arousal (right). Bonferroni-

corrected significance levels are represented by colors: orange signifies p-values < .001, yellow marks 
p-values < .05 and white marks no significance. S1-S8 = segments 1-8. Direction of the T-tests are 

column minus row element.  
 
  

3.2 Inter- and intra-subject similarity in NFC 
Inter- and intra-subject correlations were calculated for every network on the level of single 

segments, i.e. the different segments of the movie. Figure 3 summarizes the results across all 

networks and segments based on Pearson correlation coefficients (Figure 3A), and shows 

results of the LMM analyses on inter-(Figure 3B) and intra-subject similarity (Figure 3C). We 

found that inter- and intra-subject similarity both fluctuate across time for all networks.  We will 

further analyze the statistical significance in the following sections.  
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Fig 3. Results of the LMM showing how the fixed effect network, movie segment, arousal and 

valence and the random effect subject identity contribute to inter- and intra-subject similarity 

in NFC. (A) Inter- and intra-subject correlation of each movie segment averaged in each 

network, based on Pearson correlation coefficients. The x axis depicts different movie 

segments. The y axis represents the averaged similarity of the functional connectivity matrix 

derived from one subject compared to all other subjects within each network. (B) Results of 

the LMM on inter-subject similarity. (C) Results of the LMM on intra-subject similarity. 

 

3.2.1 Inter-subject similarity 

The best model that best fitted on inter-subject similarity as selected using BIC consists of the 

random factor subject identity, the fixed factors network, movie segment and valence, and the 

interaction between the fixed factors movie segment and valence. All parameter estimates 

and p-values can be seen in Figure 3B. The intercept for inter-subject similarity is 0.245, 

representing the average inter-subject correlation value. Of all 14 networks, the AM, ER, 

EmoSF, Empathy, Rew, SM, VigAtt, WM and eMDN networks differed significantly from the 

“mean network” reference category representing the mean inter-subject similarity across all 

networks. The AM, ER and SM networks show negative coefficients, indicating that inter-

subject similarity is lower in these networks than on average. The EmoSF, Empath, Rew, 

VigAtt, WM and eMDN networks were associated with higher inter-subject similarity than 

average. Movie segment, valence and their interaction effect reached significance as well. 

While movie segment and the movie segment-valence interaction were associated with higher 

inter-subject similarity, valence was associated with lower inter-subject similarity. The 

estimated coefficient for subject identity was 0.001, indicating a low effect of subject identity 

on inter-subject similarity and small differences between subjects. 

 

3.2.2 Intra-subject similarity 

The best model that best fitted on intra-subject similarity as selected using BIC consists of the 

random factor subject identity, the fixed factors network, movie segment, valence and arousal, 

and the interactions between fixed factors movie segment and valence and between movie 

segment, arousal and valence. All parameter estimates and p-values can be seen in Figure 

3C. The intercept for intra-subject similarity is 0.473, representing the average intra-subject 

correlation value. The AM, CogAC, ER, EmoSF, Empathy, Motor, SM, ToM, VigAtt, WM, 

eMDN and eSAD network differed significantly from the reference category representing the 

mean intra-subject similarity across all networks. The AM, ER, SM, ToM and eSAD networks 
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were associated with lower intra-subject similarity, whereas the CogAC, EmoSF, Empathy, 

Motor, VigAtt, WM and eMDN networks were associated with higher intra-subject similarity 

than average. While movie segment and arousal did not reach significance, valence, the 

movie segment-valence interaction and the movie segment-arousal-valence interaction did. 

Valence was associated with lower intra-subject similarity, while the movie segment-valence 

and movie segment-arousal-valence interaction were associated with higher intra-subject 

similarity. The estimated coefficient for subject identity was 0.01, indicating a low effect of 

subject identity on intra-subject similarity and small differences between subjects. 

 

4. Discussion 
In this study, we aimed to investigate the inter- and intra-subject similarity of NFC over the 

course of a full narrative movie. By analyzing a publicly available dataset that contains fMRI 

data spanning a full narrative movie, we investigated changes in similarity over multiple, 

consecutive movie segments. Inter- and intra-subject similarity were best explained when 

accounting for network, movie segment, valence and a movie segment by valence interaction. 

Additionally, arousal played a role in explaining intra-subject similarity by interacting with 

movie segment and valence. The effect of the movie stimulus on changes in inter- and intra-

subject similarity was network dependent. Comparing portrayed valence and arousal across 

movie segments showed that both varied across the segments, indicating differences in 

emotional content that we could relate to the content of the different movie segments.  

 

4.1 Portrayed valence and arousal  
Emotions are an important feature of movie stimuli. Shorter movies have been used to study 

emotion processing (Westermann et al., 1996; Carvalho et al., 2012; Schaefer at al., 2010) 

and longer movies might allow studying emotions across a larger timescale. Emotions are a 

major factor in narration (Cutting, 2016; Aldama, 2015), change over time, and dynamically 

interact with social context (Redcay & Moraczewski, 2019). Therefore, full narrative movies 

have clear advantages for studying emotions in a naturalistic setting. Additionally, emotions 

portrayed in movies affect inter-subject synchronization (Dziura et al., 2021) and inter-subject 

alignment of brain states (Chang et al., 2021), which makes them a relevant factor for studying 

individual differences using naturalistic viewing.  
Here, we used a previously reported description (Labs et al., 2015) of portrayed valence and 

arousal for comparisons between the emotional content of different movie segments. Our 
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results showed that movie segments differed in the direction (i.e.: positive/negative valence ; 

high/low arousal) and the extent of agreement between observers concerning these measures 

(Figure 2). In our results a pattern emerged in which segments that were marked by high 

concordance in positive valence also showed good agreement in low arousal evaluations 

(segments 1, 6, 7, 8), whereas the reversed pattern was observable in segment 4. This 

indicates a potential negative relationship between valence and arousal as depicted in our 

movie stimuli. Valence and arousal are the bipolar dimensions in circumplex models of affect 

(Yik, Russell, Barrett, 1999), and the relationship between valence and arousal seems to be 

highly individual and related to personality and culture (Kuppens et al., 2016).  
Overall, the pattern of results implies that the segments of the chosen movie stimulus differed 

in emotional content, which makes it valuable for inducing variability in functional networks 

associated with socio-emotional processing. Specifically, the Forrest Gump movie features a 

broad range of themes (love, friendship, politics, fate), settings (varying historical events, 

places, times and roles of the protagonist) and situations portraying a wide spectrum of 

emotions in different contexts. Our results are thus in line with studies showing that movies 

can elicit complex and mixed states of emotions (Schaefer et al., 2010; Carvalho et al., 2012). 

In particular, the Forrest Gump movie stimulus has been shown to induce distinct affective 

states throughout the movie, which was used to map the topographic organization of these 

states (Lettieri et al., 2019). Hence in accordance with the proposal by Finn and colleagues 

(2017), the chosen movie can evoke brain states in a meaningful manner, and thus represents 

a fitting stimulus for studying variability in and between subjects over time. 
We investigated portrayed valence and arousal as important emotional features of the movie 

stimulus. Critically, Labs et al. (2015) created an annotation of the movie stimulus content, not 

an annotation of the viewer’s emotional experiences. In order to characterize the portrayed 

emotions as a relatively lower level feature, observers rated all movie scenes in randomized 

order to prevent “carry-over” effects from the context the scenes appear within and the current 

mood of the movie (Labs et al., 2015). This annotation therefore offers descriptive information 

about the movie stimulus rather than assessing the full emotional complexity of the movie and 

its effects on the viewer. The characterisation of emotion cues in single scenes offers the 

benefit of relating these cues to other features of the movie scenes (e.g. lighting, audio 

features) in future studies.  

 

4.2 Inter-subject similarity 
Across networks, inter-subject correlations increased over the course of the movie, indicating 

a general tendency of subjects’ NFC to become more similar (Figure 3A). 
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By using LMM, we found several factors contributing to changes in inter-subject similarity, 

including network, movie segment, valence and interaction of movie content and valence. 

Specifically, the model that best explains inter-subject similarity comprises the fixed effects 

network, movie segment, valence and a movie segment by valence interaction, with subject 

identity as a random effect. 
Looking more closely at the networks, we see that some networks, such as the CogAC, MNS, 

Motor, ToM and eSAD, do not contribute significantly to changes in inter-subject similarity. 

This might indicate that these networks are not sensitive to the effects of a full narrative movie 

and the emotions portrayed within. For those networks that are significantly modulated by 

movie content, we observed large variations across networks in inter-subject similarity.  The 

AM, ER and SM networks are associated with lower inter-subject similarity, which can be seen 

in lower inter-subject correlation values (Figure 3A) and negative model coefficients (Figure 

3B). This indicates that emotion regulation and long term memory processes are most 

sensitive to a full narrative movie. This might reflect the stimulus containing a highly emotional 

narrative and many references to real world events and history. Contrarily, the EmoSF, 

Empathy, Rew, VigAtt, WM and eMDN networks are associated with higher inter-subject 

similarity. Across all networks, the coefficients exhibit a wide range in values, with the ER 

network showing the highest absolute coefficient, indicating the greatest effect on inter-subject 

similarity. Movie segment had a small negative effect on inter-subject similarity, indicating that 

inter-subject similarity increases over the course of a full narrative movie, which is also 

reflected in a slight increase in inter-subject correlation values (Figure 3A). Previous research 

has shown high inter-subject variability in response to professionally produced and 

conventional movies that were much shorter (< 20min) than a full narrative movie (Hasson, 

Malach & Heeger, 2009; Vanderwal et al., 2015). It is likely that the change towards more 

similarity in NFC over the course of the movie results from the shared experience, which is 

created to evoke certain reactions and feelings in the audience. Indeed, viewers’ emotional 

and cognitive states can be affected and synchronized through director’s decisions, such as 

the camera settings, light, performance of actors, scripts and dialog, and more (Tarvainen, 

Westman & Oittinen, 2015; Münsterberg, 1916; Baranowski & Hecht, 2017). Studying viewers’ 

emotions while watching the identical stimulus used here, Lettieri et al. (2019) showed that 

ratings of basic emotions were consistent across viewers, indicating an overall highly similar 

emotional experience induced by the movie. Emphasizing the relevance of affective states in 

movie fMRI, previous studies showed higher alignment of brain states between subjects 

during highly affective events in a TV show (Chang et al., 2021) and more synchronization of 

amygdala activity between subjects during positive events in a “shared watching” condition 

(Dziura et al., 2021).  
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In our study, valence was associated with lower inter-subject similarity. A study by 

Nummenmaa et al. (2012) studied the relationship between perceived valence and arousal 

and inter-subject synchronization of brain activity during movie watching. They found that 

more negative valence was associated with increased inter-subject synchronization in an 

emotion-processing network and the default-mode network, while high arousal was associated 

with increased inter-subject synchronization in somatosensory cortices, and visual and dorsal 

attention networks (Nummenmaa et al., 2012). This is in line with the pattern of positive 

valence being associated with lower similarity in our results.  
However, the movie segment by valence interaction has a positive coefficient, indicating that 

positive valence is associated with higher inter-subject similarity across the course of a full 

narrative movie. This might represent the effects of a conventional Hollywood movie 

orchestrating similarity in viewers’ experience by using positive portrayed emotions.  
The random factor subject identity had a very small negative effect on inter-subject similarity, 

indicating that there were no great differences between subjects.  

 

4.3 Intra-subject similarity         
Our results show that intra-subject similarity increases over the course of a full narrative movie 

across networks (s. Figure 3A).  
When selecting the best model in our LMM analysis to explain intra-subject similarity, network, 

movie segment, arousal, and valence emerged as relevant fixed effects. Additionally, the 

model included a movie segment by valence and a movie segment by arousal by valence 

interaction. Again, subject identity was included as a random effect. 
Of all networks, only the MNS and Rew networks did not affect intra-subject similarity 

significantly. The AM, ER, SM, ToM and eSAD networks were associated with decreased 

intra-subject similarity, while the CogAC, EmoSF, Empathy, Motor, VigAtt, WM and eMDN 

networks were associated with increased intra-subject similarity. Similar to the results on inter-

subject similarity, emotion regulation and long-term memory were most sensitive to the effects 

of a full narrative movie, showing the lowest intra-subject similarity across movie segments. 

Additionally, networks processing self- and other-related social cognition showed low intra-

subject similarity, indicating that a full narrative movie might tax introspection and relating to 

others in a way that varies along the narrative. 
Similar to the pattern of results seen in inter-subject similarity, valence was associated with 

lower intra-subject similarity while the movie segment by valence interaction was associated 

with higher intra-subject similarity. Additionally, the three-way interaction between movie 

segment, valence and arousal was associated with higher intra-subject similarity. This might 

indicate that positive valence is generally associated with lower intra-subject similarity, 
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although the progression of movie segments and higher portrayed arousal increase intra-

subject similarity. While arousal did not significantly influence inter-subject similarity, it 

interacts with movie segment and valence when influencing intra-subject similarity. This might 

indicate that arousal is a more relevant factor when investigating similarity within subjects and 

might prompt future comparisons on the effects of movies with different levels of arousal on 

single subjects. Arousal seems to be influenced by various stylistic features of a movie and 

can be further differentiated into subdimensions such as energetic and tense mood (Tarvainen 

et al., 2015).  
The random factor subject identity had a very small positive effect on intra-subject similarity, 

indicating that there were no great differences between subjects. 

 

4.5 Limitations 
By using an unusually long naturalistic stimulus - a full-length movie - our study offers 

important insights into inter- and intra-subject similarity in NFC across a two hour acquisition 

period.  
Our results indicate that the content of a movie is a relevant factor in naturalistic viewing, but 

it is not yet certain how different content or features of a movie relate to inter- and intra-subject 

similarity. Our study of one full narrative movie and its annotation of portrayed valence and 

arousal is an important first step in quantifying this relationship. To generalize our results to 

other movies, brain measures and samples, future research needs to expand information on 

available naturalistic viewing datasets (for example by creating more annotations), so that 

content and effects on NFC can be investigated across different datasets. It is necessary to 

find a good match between movies and their annotated features, methodology and research 

question (Eickhoff et al., 2020; Saarimäki, 2021; Grall & Finn, 2022). 
Our study comes at the cost of investigating only the effects of a single movie. Comparisons 

with an equally long resting state acquisition or a movie stimulus without a narrative would 

have given stronger evidence for the effect of full narrative movies. However, there were no 

such scans available in this dataset. Analyses of additional full narrative movies might expand 

the insights gained into the effects of different narratives. The choice of a conventional 

Hollywood movie might have led to higher inter-subject similarity (Hasson, Malach, Heeger, 

2009; Vanderwal et al., 2015; Chang et al., 2021; Tarvainen, Westman & Oittinen, 201; 

Baranowski & Hecht, 2017), while more ambiguous or emotionally and socially equivocal 

movies could enhance inter-individual differences to a greater degree. 

Familiarity with a movie stimulus has been discussed as a potential factor for driving individual 

differences. An effect of repeated movie watching in functional connectivity on the network 

level has been shown before (Andric et al., 2016). However, such effects can be assumed to 
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be low in our sample. All participants were familiar with the narrative of the movie, and only 

one participant reported to never have seen the movie (Hanke et al., 2014). 
Given the unusual length of data acquisition, effects of the MRI measurement might have 

influenced the participants’ focus on and perception of the movie stimulus. For example, 

participants might have needed some time to familiarize themselves with the MRI scanner. 

However, as all participants had already participated in previous MRI measurements of the 

studyforrest project (Hanke et al., 2016; Sengupta et al., 2016), high familiarity to MRI 

scanning and all related procedures was present in this sample. The length of acquisition 

might also have affected the participants' attention. Previous studies indicate that movie 

watching is very engaging and might decrease drowsiness and sleep in the scanner (Eickhoff, 

Milham & Vanderwal, 2020), but attention might still have been impacted over such a long 

duration. NV paradigms are designed to include minimal participant instructions so as not to 

influence participants’ perception of the stimuli or add task demands not directly related to 

movie watching. In future studies, post-hoc questionnaires might be useful to estimate 

attention fluctuations, distractions, drowsiness and other potential confounds that might have 

occurred during data acquisition.    
The analyses of this study focussed on the approximately 15-minute segments the data was 

acquired in, splitting the movie into 8 segments. Time windows for analysis of NV data have 

varied in the literature and optimal time windows and scan lengths are still debatable.  Uri 

Hasson’s work on temporal receptive windows focuses on window sizes on the level of 

seconds (e.g. time windows of ~4 (“short”), ~12 (“intermediate”), and ~36 seconds (“long”)) 

(Hasson et al., 2010). Based on naturalistic viewing data, single subject identification accuracy 

was positively impacted by longer scan durations (Vanderwal et al., 2017; scan duration with 

highest accuracy ranged from ~4.5 to ~7 min depending on movie stimulus) and movies of 

~2.5 min length can be sufficient for behavioral prediction (Finn & Bandettini, 2021). Efforts 

for providing normative data during movie watching have been recommended to use minimally 

10 min and optimally at least 25 min duration per movie (Eickhoff et al., 2020). Irrespective of 

naturalistic viewing, reliability of functional connectivity measures increases with time, with 

indications that less than 10 min of RS scan duration may not capture functional connectivity 

features reliably (Laumann et al., 2015, 9 to 27 min durations; Noble et al., 2017, 5 to 25 min 

durations). These examples show that optimal scan duration may depend strongly on the 

research question at hand, with advantages coming from longer durations. In our study, 

employing a FNM with the focus on a continuously unfolding and dynamic narrative might 

speak for longer scan durations to capture the effects of these “longer term” story dynamics.  
While the long fMRI acquisition spanning a FNM is a great advantage to our study, it comes 

with the disadvantage of a small sample size. Replication in other datasets is an important 

next step, although this specific dataset remains unique in its stimulus and annotations. 
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The number of nodes constituting each meta-analytical network was different between 

networks used in this study. Recently, the influence of network size on single subject 

identifiability based on NV data has been investigated (Kröll et al., 2023), indicating that the 

number of nodes in a network are a relevant factor in network-level analyses. The networks 

that were used in this study are based on meta-analysis and represent various cognitive and 

psychological domains, so that network size is inherent to each network and cannot be 

adapted at will.  
This study used the preprocessed data made available by the original authors of the dataset 

(Hanke et al., 2016). We acknowledge that further preprocessing steps, such as scrubbing, 

might influence the results. However, data quality control of the original dataset authors 

revealed very few motion artifacts, highlighting the beneficial effect of movie watching on 

participant motion (Hanke et al., 2016). 

 

4.6 Conclusion 
The present study is the first to investigate inter- and intra-subject similarity in NFC across a 

full narrative movie. Our results show that inter- and intra-subject similarity in NFC were 

sensitive to the progressing narrative and emotions portrayed in the movie. The emotion 

regulation network displayed the lowest similarity within and between subjects in NFC, 

followed by networks associated with long-term memory processing. The sensitivity of these 

networks to the full narrative movie might be explained by the highly emotional narrative and 

continuous references to real world historical events, highlighting the importance of specific 

features and content of the chosen movie stimulus. The overarching narrative gives a unique 

possibility to study emotions in a social context and how they develop over time. These socio-

cognitive aspects seem to specifically influence similarity within subjects, as low intra-subject 

similarity was additionally seen in networks involved in self- and other-related cognition. 

Altogether, these results show that a network perspective might help to elucidate the effects 

of different movie stimuli on specific cognitive domains. Characterizing movie stimuli in more 

detail to explore the effects of different features on inter- and intra-subject similarity is critical 

for future research in naturalistic viewing. 
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