001026670 001__ 1026670
001026670 005__ 20250204113857.0
001026670 0247_ $$2doi$$a10.1557/s43579-024-00563-2
001026670 0247_ $$2ISSN$$a2159-6859
001026670 0247_ $$2ISSN$$a2159-6867
001026670 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03488
001026670 0247_ $$2WOS$$aWOS:001233735600001
001026670 037__ $$aFZJ-2024-03488
001026670 082__ $$a670
001026670 1001_ $$0P:(DE-Juel1)187067$$aNguyen, Binh Duong$$b0$$eCorresponding author$$ufzj
001026670 245__ $$aCombining unsupervised and supervised learning in microscopy enables defect analysis of a full 4H-SiC wafer
001026670 260__ $$aBerlin$$bSpringer$$c2024
001026670 3367_ $$2DRIVER$$aarticle
001026670 3367_ $$2DataCite$$aOutput Types/Journal article
001026670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724398891_22840
001026670 3367_ $$2BibTeX$$aARTICLE
001026670 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026670 3367_ $$00$$2EndNote$$aJournal Article
001026670 520__ $$aDetecting and analyzing various defect types in semiconductor materials is an important prerequisite for understanding the underlying mechanisms and tailoring the production processes. Analysis of microscopy images that reveal defects typically requires image analysis tasks such as segmentation and object detection. With the permanently increasing amount of data from experiments, handling these tasks manually becomes more and more impossible. In this work, we combine various image analysis and data mining techniques to create a robust and accurate, automated image analysis pipeline for extracting the type and position of all defects in a microscopy image of a KOH-etched 4H-SiC wafer.
001026670 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026670 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026670 7001_ $$0P:(DE-HGF)0$$aSteiner, Johannes$$b1
001026670 7001_ $$0P:(DE-HGF)0$$aWellmann, Peter$$b2
001026670 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b3$$eCorresponding author$$ufzj
001026670 773__ $$0PERI:(DE-600)2645443-9$$a10.1557/s43579-024-00563-2$$p612-627$$tMRS communications$$v14$$x2159-6859$$y2024
001026670 8564_ $$uhttps://juser.fz-juelich.de/record/1026670/files/s43579-024-00563-2.pdf$$yOpenAccess
001026670 8564_ $$uhttps://juser.fz-juelich.de/record/1026670/files/s43579-024-00563-2.gif?subformat=icon$$xicon$$yOpenAccess
001026670 8564_ $$uhttps://juser.fz-juelich.de/record/1026670/files/s43579-024-00563-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026670 8564_ $$uhttps://juser.fz-juelich.de/record/1026670/files/s43579-024-00563-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026670 8564_ $$uhttps://juser.fz-juelich.de/record/1026670/files/s43579-024-00563-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026670 8767_ $$d2025-01-06$$eHybrid-OA$$jDEAL
001026670 909CO $$ooai:juser.fz-juelich.de:1026670$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001026670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187067$$aForschungszentrum Jülich$$b0$$kFZJ
001026670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b3$$kFZJ
001026670 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026670 9141_ $$y2024
001026670 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026670 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026670 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026670 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001026670 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001026670 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026670 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001026670 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-26$$wger
001026670 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026670 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001026670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMRS COMMUN : 2022$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001026670 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001026670 920__ $$lyes
001026670 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001026670 9801_ $$aFullTexts
001026670 980__ $$ajournal
001026670 980__ $$aVDB
001026670 980__ $$aUNRESTRICTED
001026670 980__ $$aI:(DE-Juel1)IAS-9-20201008
001026670 980__ $$aAPC