001026672 001__ 1026672
001026672 005__ 20241023094528.0
001026672 020__ $$a978-981-99-7975-2 (print)
001026672 020__ $$a978-981-99-7976-9 (electronic)
001026672 0247_ $$2doi$$a10.1007/978-981-99-7976-9_5
001026672 0247_ $$2WOS$$aWOS:001283974700005
001026672 037__ $$aFZJ-2024-03490
001026672 041__ $$aEnglish
001026672 1001_ $$0P:(DE-Juel1)178633$$aBoomers, Ann Katrin$$b0$$eCorresponding author
001026672 1112_ $$aTraffic and Granular Flow '22$$cNew Delhi$$d2022-10-15 - 2022-10-17$$gTGF22$$wIndia
001026672 245__ $$aShoulder Rotation Measurement in Camera and 3D Motion Capturing Data
001026672 260__ $$aSingapore$$bSpringer Nature Singapore$$c2024
001026672 29510 $$aTraffic and Granular Flow '22 / Rao, K. Ramachandra (Editor) ; Singapore : Springer Nature Singapore, 2024, Chapter 5 ; ISSN: 2366-2557=2366-2565 ; ISBN: 978-981-99-7975-2=978-981-99-7976-9 ; doi:10.1007/978-981-99-7976-9
001026672 300__ $$a35 - 42
001026672 3367_ $$2ORCID$$aCONFERENCE_PAPER
001026672 3367_ $$033$$2EndNote$$aConference Paper
001026672 3367_ $$2BibTeX$$aINPROCEEDINGS
001026672 3367_ $$2DRIVER$$aconferenceObject
001026672 3367_ $$2DataCite$$aOutput Types/Conference Paper
001026672 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1719836624_18556
001026672 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001026672 4900_ $$aLecture Notes in Civil Engineering$$v443
001026672 500__ $$aMissing Journal: = 2366-2565 (import from CrossRef Book Series, Journals: juser.fz-juelich.de)
001026672 520__ $$aThe individual movement of pedestrians and their body parts, as for example shoulders, is of great interest to understand body movement and interactions and thus to improve pedestrian models. Nearly all laboratory experiments in pedestrian dynamics use camera data to obtain trajectories. A perpendicular top view of the camera does not only allow to extract the head position but also data of upper body segments. The detection is more reliable if shoulders are tagged with markers and for low densities of people. In this study a head-shoulder model is used to assign coloured shoulder markers to a person. The location of a marker is predicted by taking head position, basic body dimensions, movement direction and camera angle into account. It is implemented as a new feature in the software PeTrack. This paper shows a comparison of shoulder rotation measurements obtained from 3D motion capturing systems (Xsens) with those from camera data using the newly introduced model and detection technique. Detection rates and limits of the camera-based rotation measurement are shown and implications are given for the future application at high densities in crowds.
001026672 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026672 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
001026672 7001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b1
001026672 773__ $$a10.1007/978-981-99-7976-9_5
001026672 8564_ $$uhttps://juser.fz-juelich.de/record/1026672/files/Boomers2024.pdf$$yRestricted
001026672 8564_ $$uhttps://juser.fz-juelich.de/record/1026672/files/Boomers2024.gif?subformat=icon$$xicon$$yRestricted
001026672 8564_ $$uhttps://juser.fz-juelich.de/record/1026672/files/Boomers2024.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001026672 8564_ $$uhttps://juser.fz-juelich.de/record/1026672/files/Boomers2024.jpg?subformat=icon-180$$xicon-180$$yRestricted
001026672 8564_ $$uhttps://juser.fz-juelich.de/record/1026672/files/Boomers2024.jpg?subformat=icon-640$$xicon-640$$yRestricted
001026672 909CO $$ooai:juser.fz-juelich.de:1026672$$pVDB
001026672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178633$$aForschungszentrum Jülich$$b0$$kFZJ
001026672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b1$$kFZJ
001026672 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026672 9141_ $$y2024
001026672 920__ $$lyes
001026672 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001026672 980__ $$acontrib
001026672 980__ $$aVDB
001026672 980__ $$acontb
001026672 980__ $$aI:(DE-Juel1)IAS-7-20180321
001026672 980__ $$aUNRESTRICTED