001026684 001__ 1026684
001026684 005__ 20250204113857.0
001026684 0247_ $$2doi$$a10.1016/j.future.2024.05.020
001026684 0247_ $$2ISSN$$a0167-739X
001026684 0247_ $$2ISSN$$a1872-7115
001026684 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03499
001026684 0247_ $$2WOS$$aWOS:001249701400001
001026684 037__ $$aFZJ-2024-03499
001026684 041__ $$aEnglish
001026684 082__ $$a004
001026684 1001_ $$0P:(DE-Juel1)194630$$aLiu, Xin$$b0$$eCorresponding author$$ufzj
001026684 245__ $$aRefining computer tomography data with super-resolution networks to increase the accuracy of respiratory flow simulations
001026684 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001026684 3367_ $$2DRIVER$$aarticle
001026684 3367_ $$2DataCite$$aOutput Types/Journal article
001026684 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721025150_6762
001026684 3367_ $$2BibTeX$$aARTICLE
001026684 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026684 3367_ $$00$$2EndNote$$aJournal Article
001026684 520__ $$aAccurately computing the flow in the nasal cavity with computational fluid dynamics (CFD) simulations requires highly resolved computational meshes based on anatomically realistic geometries. Such geometries can only be obtained from computer tomography (CT) data with high spatial resolution, i.e., featuring a ≤ 1 mm slice thickness. In practice, CT images are, however, recorded at a lower resolution to not expose patients to high radiation and to reduce the overall costs. To overcome this problem and to provide patients with a detailed physics-based diagnosis, e.g., for surgery planning, the potential of super-resolution networks (SRNs) to increase the CT resolution is analyzed. Therefore, an SRN is developed and trained on CT data. Its predictive performance is improved by an automated hyperparameter optimization technique. The training time is further reduced without predictive accuracy degradation by oversampling images with challenging regions. The performance of the SRN is assessed by an analysis of the reconstructed 3D surfaces of the human upper airway and by comparing results of CFD simulations. That is, surfaces and simulation results based on SRN-generated CT data at 1 mm resolution are compared to those obtained from unmodified CT data-sets at low (3 mm) and high (1 mm) resolution, as well as from CT data interpolated to a 1 mm resolution from coarse data. The findings reveal the SRN-based approach to have the lowest deviations in the surfaces and CFD results when compared to those based on the original high-resolution data. The pressure loss between the inflow (nostrils) and outflow (pharynx) regions averaged for three test patients differs by only 1.3%, compared to 8.7% and 8.8% in the coarse and interpolated cases. It is concluded that the SRN-based method is a promising tool to enhance underresolved CT data to yield reliable numerical results of respiratory flows.
001026684 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026684 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
001026684 536__ $$0G:(DE-Juel1)JLESC-20150708$$aJLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)$$cJLESC-20150708$$fJLESC$$x2
001026684 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x3
001026684 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026684 7001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b1
001026684 7001_ $$0P:(DE-Juel1)188471$$aQuercia, Alessio$$b2$$ufzj
001026684 7001_ $$0P:(DE-HGF)0$$aEgele, Romain$$b3
001026684 7001_ $$0P:(DE-Juel1)191494$$aPfaehler, Elisabeth$$b4$$ufzj
001026684 7001_ $$0P:(DE-HGF)0$$aShende, Rushikesh$$b5
001026684 7001_ $$0P:(DE-Juel1)180916$$aAach, Marcel$$b6$$ufzj
001026684 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b7
001026684 7001_ $$0P:(DE-HGF)0$$aBalaprakash, Prasanna$$b8
001026684 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b9$$ufzj
001026684 773__ $$0PERI:(DE-600)2020551-X$$a10.1016/j.future.2024.05.020$$gVol. 159, p. 474 - 488$$p474 - 488$$tFuture generation computer systems$$v159$$x0167-739X$$y2024
001026684 8564_ $$uhttps://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.pdf$$yOpenAccess
001026684 8564_ $$uhttps://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.gif?subformat=icon$$xicon$$yOpenAccess
001026684 8564_ $$uhttps://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026684 8564_ $$uhttps://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026684 8564_ $$uhttps://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026684 8767_ $$d2024-07-30$$eHybrid-OA$$jDEAL
001026684 909CO $$ooai:juser.fz-juelich.de:1026684$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194630$$aForschungszentrum Jülich$$b0$$kFZJ
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b1$$kFZJ
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188471$$aForschungszentrum Jülich$$b2$$kFZJ
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191494$$aForschungszentrum Jülich$$b4$$kFZJ
001026684 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180916$$aForschungszentrum Jülich$$b6$$kFZJ
001026684 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b7$$kRWTH
001026684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b9$$kFZJ
001026684 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026684 9141_ $$y2024
001026684 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026684 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026684 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026684 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001026684 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001026684 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001026684 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026684 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001026684 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001026684 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001026684 920__ $$lyes
001026684 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001026684 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x1
001026684 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
001026684 9801_ $$aFullTexts
001026684 980__ $$ajournal
001026684 980__ $$aVDB
001026684 980__ $$aI:(DE-Juel1)JSC-20090406
001026684 980__ $$aI:(DE-Juel1)IAS-8-20210421
001026684 980__ $$aI:(DE-Juel1)INM-4-20090406
001026684 980__ $$aUNRESTRICTED
001026684 980__ $$aAPC