001     1026684
005     20250204113857.0
024 7 _ |a 10.1016/j.future.2024.05.020
|2 doi
024 7 _ |a 0167-739X
|2 ISSN
024 7 _ |a 1872-7115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03499
|2 datacite_doi
024 7 _ |a WOS:001249701400001
|2 WOS
037 _ _ |a FZJ-2024-03499
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Liu, Xin
|0 P:(DE-Juel1)194630
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Refining computer tomography data with super-resolution networks to increase the accuracy of respiratory flow simulations
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721025150_6762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurately computing the flow in the nasal cavity with computational fluid dynamics (CFD) simulations requires highly resolved computational meshes based on anatomically realistic geometries. Such geometries can only be obtained from computer tomography (CT) data with high spatial resolution, i.e., featuring a ≤ 1 mm slice thickness. In practice, CT images are, however, recorded at a lower resolution to not expose patients to high radiation and to reduce the overall costs. To overcome this problem and to provide patients with a detailed physics-based diagnosis, e.g., for surgery planning, the potential of super-resolution networks (SRNs) to increase the CT resolution is analyzed. Therefore, an SRN is developed and trained on CT data. Its predictive performance is improved by an automated hyperparameter optimization technique. The training time is further reduced without predictive accuracy degradation by oversampling images with challenging regions. The performance of the SRN is assessed by an analysis of the reconstructed 3D surfaces of the human upper airway and by comparing results of CFD simulations. That is, surfaces and simulation results based on SRN-generated CT data at 1 mm resolution are compared to those obtained from unmodified CT data-sets at low (3 mm) and high (1 mm) resolution, as well as from CT data interpolated to a 1 mm resolution from coarse data. The findings reveal the SRN-based approach to have the lowest deviations in the surfaces and CFD results when compared to those based on the original high-resolution data. The pressure loss between the inflow (nostrils) and outflow (pharynx) regions averaged for three test patients differs by only 1.3%, compared to 8.7% and 8.8% in the coarse and interpolated cases. It is concluded that the SRN-based method is a promising tool to enhance underresolved CT data to yield reliable numerical results of respiratory flows.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)
|0 G:(DE-Juel1)JLESC-20150708
|c JLESC-20150708
|f JLESC
|x 2
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 1
700 1 _ |a Quercia, Alessio
|0 P:(DE-Juel1)188471
|b 2
|u fzj
700 1 _ |a Egele, Romain
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pfaehler, Elisabeth
|0 P:(DE-Juel1)191494
|b 4
|u fzj
700 1 _ |a Shende, Rushikesh
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 6
|u fzj
700 1 _ |a Schröder, Wolfgang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Balaprakash, Prasanna
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 9
|u fzj
773 _ _ |a 10.1016/j.future.2024.05.020
|g Vol. 159, p. 474 - 488
|0 PERI:(DE-600)2020551-X
|p 474 - 488
|t Future generation computer systems
|v 159
|y 2024
|x 0167-739X
856 4 _ |u https://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1026684/files/1-s2.0-S0167739X2400253X-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1026684
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191494
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180916
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21