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A B S T R A C T

Accurately computing the flow in the nasal cavity with computational fluid dynamics (CFD) simulations
requires highly resolved computational meshes based on anatomically realistic geometries. Such geometries
can only be obtained from computer tomography (CT) data with high spatial resolution, i.e., featuring a
≤ 1 𝑚𝑚 slice thickness. In practice, CT images are, however, recorded at a lower resolution to not expose
patients to high radiation and to reduce the overall costs. To overcome this problem and to provide patients
with a detailed physics-based diagnosis, e.g., for surgery planning, the potential of super-resolution networks
(SRNs) to increase the CT resolution is analyzed. Therefore, an SRN is developed and trained on CT data.
Its predictive performance is improved by an automated hyperparameter optimization technique. The training
time is further reduced without predictive accuracy degradation by oversampling images with challenging
regions. The performance of the SRN is assessed by an analysis of the reconstructed 3D surfaces of the human
upper airway and by comparing results of CFD simulations. That is, surfaces and simulation results based on
SRN-generated CT data at 1 𝑚𝑚 resolution are compared to those obtained from unmodified CT data-sets at low
(3 𝑚𝑚) and high (1 𝑚𝑚) resolution, as well as from CT data interpolated to a 1 𝑚𝑚 resolution from coarse data.
The findings reveal the SRN-based approach to have the lowest deviations in the surfaces and CFD results when
compared to those based on the original high-resolution data. The pressure loss between the inflow (nostrils)
and outflow (pharynx) regions averaged for three test patients differs by only 1.3%, compared to 8.7% and
8.8% in the coarse and interpolated cases. It is concluded that the SRN-based method is a promising tool to
enhance underresolved CT data to yield reliable numerical results of respiratory flows.
1. Introduction

Methods to diagnose pathologies in the human respiratory system
have recently evolved to include results of computational fluid dynam-
ics (CFD) simulations. CFD methods allow to numerically quantify the
functions of the nasal cavity by analyzing fluid mechanical properties
of respiratory flows, e.g., the pressure loss, the temperature distri-
bution, or the mass flux distribution [1]. To accurately compute the
flow in the nasal cavity by means of numerical simulations, highly
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resolved computational meshes based on realistic reconstructed ge-
ometries are necessary [2]. Such geometries can only be obtained
from medical images that feature a high spatial resolution and enable
to accurately identify the interface between tissue and the fluid do-
main. Computer tomography (CT) recordings, in contrast to magnet
resonance tomography (MRT) images, fall into this category.

A CT scan protocol includes multiple parameters such as imaging
matrix, slice thickness and gap, number of recordings, reconstruction
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filter, etc., which determine the image quality, scanning time as well as
radiation dose [3]. When defining the protocol, a compromise between
a diagnostically acceptable image quality and feasible costs and radia-
tion doses needs to be achieved. Low-radiation CT is generally preferred
in clinical environments to avoid putting the patients’ health at risk.
However, this leads to low quality images in terms of the signal to noise
ratio (SNR) and resolution [3]. Although the relationship of medical
imaging radiation doses to cancer rates is still disputable, considering
that a large amount of people undergoes this procedure with repeated
exposure, it is a clinic’s obligation to reduce the radiation dose as much
as possible [4].

During a CT scan, consecutive cross-sectional slices in the 𝑥- and
-directions with a certain in-plane resolution are obtained along the
-axis (see Fig. 1 for reference of the coordinate system), to cover the
D region of interest. An accurate reconstruction of geometries requires
hin adjacent slices which will significantly increase the radiation dose.
t is a trade-off between having a sufficient through-plane resolution in
he 𝑧-direction, to preserve accurate anatomical features, and reducing
he cost and cumulative radiation dose to patients. One can either
ecrease slice spacing in the scanning process to suffice through-plane
esolution, or increase the resolution by employing super-resolution
SR) techniques a posterior the recording, i.e., without increasing the
adiation exposure.

SR techniques refer to signal processing approaches to enhance
mage resolution, overcoming the inherent physical limitations of imag-
ng systems. Traditional SR methods include nonuniform interpola-
ion [5], frequency domain approaches [6], or adding regularization
7]. However, these approaches are often limited to a certain degrada-
ion model [8]. Machine learning (ML) tools such as artificial neural
etworks (ANNs) have recently gained increasing popularity in SR
pplications. Various architectures of SR networks (SRNs) have been
nvestigated and often achieve or exceed state-of-the art performances.
pecifically, the SR convolutional neural network (SRCNN) is consid-
red the pioneering work utilizing deep learning for this task [9,10].
o address more than just one upscaling factor, the more flexible
ulti-scale deep super-resolution network (MSDSRN) was developed

n [11]. In [12], a generative adversarial network (GAN) is combined
ith skip connections that directly process information at any level

o higher layers. This super-resolution GAN (SRGAN) was the first
ramework capable of inferring photo-realistic natural images with a 4×
pscaling factor. In an improved version of the SRGAN, the enhanced
RGAN (ESRGAN) [13], batch normalization is removed, the residual-
n-residual approach is integrated into the GAN architecture, and a
erceptual loss for outputs right after convolutional layers is added to
he loss function. The ESRGAN was found to generate sharper edges
nd improved textures compared to the SRCNN or SRGAN approaches.
ecently, transformer networks have been applied in [14] for non-blind
R tasks. Transformers use an attention mechanism to identify the most
mportant elements of a sequence. The efficient SR transformer was
ound to be competitive with the previously mentioned networks, while
eing trained using less computational resources.

Despite significant progress in SR architectures for general images,
heir application to medical images requires some additional consider-
tions. First, medical image data-sets are hard to acquire and limited
y data privacy issues. This leads to relatively small size data-sets,
specially when it comes to obtaining coarse and fine image pairs.
herefore, non-blind SRNs are typically employed for medical images,

n which the coarse images are generated from the original images with
known degradation model. Data paucity can be partly tackled by

ugmentation or transfer learning. To reduce the generalization error,
he model can be trained with modified copies of existing data by
ropping, rotating, scaling, etc. [15]. In transfer learning, a model is
irst pre-trained using data with similar visual properties before it is
ine-tuned with the medical image data-set [16]. Second, due to limi-
ations in scanning time and radiation dose, medical images are often
475

rone to a low resolution and SNR. Refined anatomical structures make
it difficult to develop an SRN that enhances images while preserving
crucial features.

The well known U-Net has been extremely successful in medical
image analysis since it has been introduced in 2015 in [15]. There has
been an explosive number of applications primarily in segmentation
tasks [2], but also tasks related to medical image registration [17],
SR [18], synthesis [19], removing artifacts [20], etc. The modular and
symmetric design of the U-Net architecture makes it easy to incor-
porate additional components to improve performance. Many U-Net
variants have been developed [21], including the inception U-Net [22],
attention U-Net [23], or the deep residual U-Net (ResUnet) [24]. The
ResUnet architecture [24] was proposed to combine the strength of
both residual learning and U-Net, with residual blocks added into the
U-Net architecture to ease model training for complex images. The
ResUnet is chosen as the SRN in this study.

The above-mentioned ML-based SR models have in common, that
the SRNs are trained with pairs of input and the corresponding output
images with a higher resolution. For CT recordings in general, such an
approach would be sufficient for increasing in-plane resolutions. But
for the CT recordings studied here, it is more important to increase the
through-plane resolution, because it is directly related to the number of
slices, and, therefore, the radiation dose, the quality of reconstructed
3D models of the upper airway, and the picture archiving and com-
munication system (PACS) storage size [4]. For the current data-set,
the through-plane resolution along the 𝑧-axis could be increased by
first reformatting axial slices into sagittal or coronal slices, and then
apply single image SR. (see Fig. 1). However, the number of slices in
the 𝑧-direction varies from patient to patient, which means that the
images from the in- and output data-sets have no common size for
different patients. A solution is to choose the largest possible size of the
complete data-set and up-sample to it. The data-set used in this study
includes only few CT recordings that also cover the pharynx region,
i.e., having a large number of slices in the 𝑧-direction. Using such a
method would hence unnecessarily increase memory usage. Another
problem occurs, if the trained network is applied in practice and is fed
with a CT recording containing more slices in the 𝑧-direction than any
of the data used for training and testing the SRN. To overcome these
limitations, the proposed SRN uses in-plane axial slices from CT data
with a low through-plane resolution as input and predicts those axial
slices that are missing for a high through-plane resolution. In this way,
the proposed SRN can be compatible with other data-sets, leading to
an easy deployment for broader clinical workflows and scenarios.

The performance of ML algorithms critically depends on hyperpa-
rameters during training [25], which traditionally have to be set by
researchers manually. ANNs have a lot of hyperparameters, e.g., there
are optimization-related hyperparameters such as the learning rate and
batch size, but also architecture-related hyperparameters such as the
layer size or the type of activation function. In addition, the optimal
hyperparameters are task-specific, which makes their optimization nec-
essary for different datasets. In practice, experts are often going through
a trial-error process to guess optimal hyperparameters. Therefore, to
ease this task, hyperparameter optimization (HPO) algorithms have
been developed.

There exist many HPO algorithms in literature but a large portion
of them can be classified as black-box optimization algorithms, i.e.,
they are based only on input–output pairs of the optimized function.
Model-free methods such as grid and random search [26] are flexible
but become exponentially inefficient with the number of hyperparam-
eters to be optimized. On the other hand, Bayesian optimization (BO)
uses surrogate models to learn the underlying mapping between the
model hyperparameters and performance, which usually makes it more
efficient [27]. A major hurdle in HPO is the cost to repeatedly train a
model given a suggested set of hyperparameters during the process. A
way to reduce this cost, also frequently employed in manual tuning,

is to limit the maximum budget for each evaluation. For instance,



Future Generation Computer Systems 159 (2024) 474–488X. Liu et al.
Fig. 1. Coordinate system and examples for sagittal (yellow), coronal (purple), and axial (blue) planes of CT imaging data showing the human upper airway. The current data-set
for each patient consists of cross-sectional axial slices in the 𝑥 and 𝑦-axis (c), stacked along the 𝑧-axis to cover the 3D region of interest. The 3D volumetric data is reformatted
into sagittal (a) and coronal (b) planes for representation. A segmentation separating the airway from other matter is illustrated in green. The figure originates from [2], where it
is used to explain the anatomy and functionality of the nose, and is used with the permission of the authors.
training only with a few iterations or on a subset of data. Multi-
fidelity HPO methods adopt such heuristics by doing early discarding of
low-performing candidates at early iterations. The choice of the multi-
fidelity algorithm is essentially a trade-off between the quality of the
approximated error and the available run-time (i.e, compute budget).
The current study is guided by previous benchmarks [28], i.e., the
HPO approach combines Bayesian and multi-fidelity optimization to
determine a set of suitable hyperparameters for the SRN.

To the best of the authors’ knowledge, the present study employs
SRNs for the first time to enhance a CFD-based analysis of respiratory
flows. To evaluate the quality of the predicted images, the output of
trained SRNs is compared to (i) original CT data with a fine resolution,
(ii) original CT data with a coarse resolution, and (iii) interpolated
CT data. The comparison also takes physical properties into account
by considering the results of numerical flow simulations through the
nasal cavities. The surface of the airways is extracted from the CT
data by employing the pipeline developed in [2]. Simulations are
carried out with the highly scalable lattice-Boltzmann method (LBM)
of the simulation framework multiphysics-Aerodynamisches Institut
Aachen (m-AIA), which is the successor of the framework Zonal Flow
Solver [29].

The manuscript is structured as follows. Section 2 explains the
computational methods, the results are presented in Section 3, and
Section 4 summarizes and concludes the work.

2. Methods

This section provides an overview over the computational methods
used in the current study. Section 2.1 explains the CT data and the
sampling strategy to generate coarse and fine training pairs. In Sec-
tion 2.2, the SRN architecture is described, followed by a description
of how to find a suitable set of hyperparameters in Section 2.3. A
476
data-efficient method based on the sample importance is described
in Section 2.4, which further accelerates training convergence. Fi-
nally, Section 2.5 provides information on the methods for generating
the computational meshes, conducting simulations, and imposing the
boundary conditions.

2.1. Data pre-processing

Anonymized head CT recordings from 65 patients are used. The
data-set is composed of axial slices with a matrix size of 512 × 512
pixels. The in-plane pixel size ranges from 0.3 mm to 0.9 mm, and
the slice thickness from 0.2 mm to 1.0 mm. To establish a uniform
basis for the training data, the through-plane resolution along the
𝑧-axis is resliced to a common slice thickness for all patients. The
uniformly resampled slices are used as ground truth in later steps.
Studies on bone and skull reconstruction suggest using at least a slice
thickness of 1.0 mm to keep the reconstruction error at a reasonable
amount [30,31]. Therefore, 1.0 mm is chosen as the slice thickness for
the ground truth data-set.

The sampling strategy used to generate pairs of input (coarse) and
ground truth (fine) data to train the SRN is shown in Fig. 2. A lack
of matching coarse and fine data of the same patient means that the
focus is only on non-blind SR, a common practice for medical imaging
applications where coarse data are down-sampled from fine data. The
coarse data-set is generated from the fine data-set by keeping one slice
out of three, mimicking two different clinical protocols with a 1.0 mm
𝑧-axis resolutions where thin slices are scanned adjacent to each other
for the fine data-set, and a 3.0 mm 𝑧-axis resolutions where slices
are scanned sparsely for the coarse data-set, respectively. As shown
in Fig. 2, two axial slices with a spacing of 3.0 mm (red) are used as
the input, and the two enclosed slices (green) are used as ground truth
for the SRN. The prediction from the SRN is concatenated to the input
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Fig. 2. Illustration of the sampling strategy to generate pairs of input (red) and ground
truth (green) data for training the SRN. The coarse data-set with 3.0 mm through-plane
resolution is generated by keeping one out of three 1.0 mm slices of the original fine
data-set.

data to generate the final output. To generate as many training pairs as
possible, a sliding window approach is applied along the 𝑧-axis, i.e., the
same axial slice can appear in multiple input/output pairs.

In each of the above-described data-sets, images from 62 patients
are used for training and validation, and images from 3 patients (I, II,
III) for testing. In the training part, slices are randomly flipped along
the 𝑥-axis to increase the number of training samples.

2.2. Network architecture

The employed SRN is inspired by the ResUnet introduced in [15,24].
The architecture of the SRN is depicted in Fig. 3. Residual units are
added into the plain U-Net structure to ease training of deep net-
works [24]. Like in the original U-Net, the SRN has a contracting path
to extract features and an expanding path to recover the resolution
of the input data. On each resolution level in the contracting path, a
convolutional block (CB), the combination of a 3 × 3 convolutional
layer (Conv), batch normalization (BN) [32], and leaky rectified linear
units (LReLU) [33] are applied twice. Subsequently, a 2 × 2 max-
pooling (MP) layer with stride 2 is employed for down-sampling. The
LReLU activation function is known to prevent the dying ReLU problem
by setting a small but non-zero gradient for negative values, i.e.,

𝐿𝑅𝑒𝐿𝑈 () =

{

 if  ≥ 0
𝛼 if  < 0.

(1)

The slope 𝛼 is set to 10−2. Batch normalization is used to reduce over-
fitting and to increase the learning stability by shifting the layers’ inputs
to a zero-mean and unit variance. After the max-pooling step, the reso-
lution is halved and the number of channels doubled. In the expanding
path, up-sampling is implemented with deconvolution layers.

In total, there are four resolution levels in this network. On each
level, the number of feature maps (nFC) is doubled. The number of
feature maps at the first level is determined by the HPO process. Short
skip connections are implemented between the two CBs for residual
learning. Long skip connections to concatenate feature maps from the
contracting path to the corresponding level in the expanding path
are implemented to facilitate information propagation. The network is
initialized with the Xavier method [34]. Optimizer configurations are
selected later in the HPO process to minimize the mean-squared error
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(MSE) between the SRN output and ground truth. The training data-set
𝑋𝑡𝑟𝑎𝑖𝑛 is normalized to zero mean and unit standard deviation before
feeding it into the SRN, i.e., 𝑋𝑡𝑟𝑎𝑖𝑛 = (𝑋𝑡𝑟𝑎𝑖𝑛−𝑋𝑡𝑟𝑎𝑖𝑛)∕𝜎𝑋𝑡𝑟𝑎𝑖𝑛

, where 𝑋𝑡𝑟𝑎𝑖𝑛
and 𝜎𝑋𝑡𝑟𝑎𝑖𝑛

are the mean and standard deviation of the training data-set.
The network is implemented with the PyTorch framework [35].

2.3. Hyperparameter selection

The hyperparameter configuration of the SRN is selected by multi-
fidelity BO, cf. Section 1 and the following Section 2.3.1. The HPO
problem can be formulated as follows. Consider an ML algorithm 𝝀
that aims to learn the mapping  () to a minimized loss ( ; ),
where  are samples from a certain distribution  and 𝜆 is the
hyperparameter vector. The hyperparameter space can be denoted as
𝜦 = 𝛬1 ×𝛬2 ×⋯𝛬𝑁 , where 𝑁 is the total number of hyperparameters.
The goal of HPO is to find the hyperparameter vector 𝝀∗ = 𝜆1, 𝜆2,… , 𝜆𝑁
that minimizes the generalization loss

𝝀∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆∈𝜦

E𝑋∼ 𝑽 (,𝜆, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑖𝑑 ), (2)

where 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑋𝑣𝑎𝑙𝑖𝑑 are training and validation data-sets that are
a finite set of samples from  . The variable 𝑽 represents the valida-
tion strategy. 20% data points of the training data-set are randomly
selected to calculate the validation loss to select the hyperparameter
configuration.

2.3.1. Multi-fidelity Bayesian optimization
A flow-chart depicting the multi-fidelity BO process is shown in

Fig. 4. BO is a well-established model-based HPO method with two
features that make it efficient: a surrogate model to learn the un-
derlying mapping between model performance and hyperparameter
configuration, and an acquisition function to decide which configu-
ration is best to evaluate next. After each iteration, observations of
the hyperparameter configurations and objective function are fit into
the surrogate model. Here, random forest is chosen as the surrogate
model as it is capable of handling a large number of evaluations [36].
The acquisition function calculates the predictive distribution of the
surrogate model and determines the next sample point. The upper
confidence bound (UCB) algorithm is used

𝑈𝐶𝐵𝜅 (𝜆) = 𝜇(𝜆) +𝜎(𝜆), (3)

where 𝜇 is the expected performance observed so far and 𝜎 is the
uncertainty described by the standard deviation. The quantity , which
explicitly trades off exploration and exploitation, is set to  = 1.96. This
corresponds to 95% of the confidence interval.

Multi-fidelity methods use cheap but lower fidelity approximations
to evaluate the objective function. Examples of approximations include
training the model on subsets of the data, using subsets of features,
or lower number of epochs, etc. Multi-fidelity approaches include
learning-curve extrapolation [37] and bandit-based algorithms [38].
Combining them with BO achieves further speed-up. The successive
halving algorithm (SHA) [39] is a simple yet powerful bandit-based
algorithm. After training all configurations with a small initial budget
(where budget in most cases refers to the number of training iterations),
only top-performing ones are assigned to an increased budget and
the rest is cut. This process is repeated to subsequent cut-off points
until the maximum budget is reached. The asynchronous SHA (ASHA)
further increases the scalability by deciding which trials are promising
on a rolling basis [40], mitigating the problem of idle workers. The
ASHA uses parallel resources more efficiently and is used to select the
hyperparameter configuration of the SRN.



Future Generation Computer Systems 159 (2024) 474–488X. Liu et al.
Fig. 3. Architecture of the SRN. Abbreviations: Conv: convolutional layer, BN: batch normalization, LReLu: leaky rectified linear units, MP: max-pooling, number of feature channels
𝑛𝐹𝐶.
Fig. 4. Flow chart of multi-fidelity Bayesian optimization.

Table 1
HPO search space and result for the SRN. The optimizer settings are ADAM or SGD
with 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9 (the type is [cat] = categorial); 𝐿𝑅 = learning rate, sampled
logarithmically; 𝐾𝑆 = kernel size; 𝑛𝐹𝐶 = number of feature channels, each of type
[real] or [int] = integer.

Optimizer 𝐿𝑅 𝐾𝑆 𝑛𝐹𝐶

Range ADAM, SGD 10−4 to 1 3, 5 32, 64, 96
[cat] [real] [int] [int]

Results SGD 0.017 3 96

2.3.2. Experimental settings using DeepHyper
In this work, the well-established AutoML package DeepHyper [41]

is used for HPO. First, the search space is defined with a combination
of categorical- ([cat]), real- ([real]), and integer- ([int]) val-
ued hyperparameters, including optimizer settings, number of feature
channels 𝑛𝐹𝐶, and convolution kernel size 𝐾𝑆, as listed in Table 1.
Two optimizers can be selected, i.e., the adaptive moments estimation
(ADAM) optimizer [42] and the stochastic gradient descent (SGD)
approach [43] with a momentum of 0.9. The learning rate 𝐿𝑅 is
sampled logarithmically from 10−4 to 1.

An initial set of configurations is generated from the defined search
space. Each trial is sent to a single graphics processing unit (GPU) for
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training by Ray [44], a compute framework to scale Python workloads.
The returned objectives of trials (in this case the MSE) are gathered on
the master node, to determine whether the trial should be cut-off or
continued. The surrogate model and acquisition function are updated,
and new configurations are sampled and distributed for evaluation.
In the DeepHyper implementation, the halving schedule follows a
geometric progression to reduce the number of configurations by a
reduction factor 𝑟. The first halving step is done after a minimum
number of steps 𝑚𝑠. The next halving step is performed after 𝑚𝑠 × 𝑟
steps, followed by another one after 𝑚𝑠 × 𝑟2 steps. The choice of 𝑟 and
𝑚𝑠 determines how aggressive the reduction scheme acts. Excessive re-
duction can cause premature termination of good configurations, while
inadequate reduction can lead to wasting resources on running poor
configurations for too long. It is a trade-off between approximation
error and saved computational resources, or within a fixed total amount
of computational resources, the number of trials to be evaluated. Here,
the default settings of DeepHyper are used with 𝑚𝑠 = 1 and 𝑟 = 3.

2.4. Biasing SGD towards relevant image regions

The data-set features a high percentage of homogeneous regions
with, e.g., fully black or gray regions, which are easy to super-resolve. It
has been hypothesized that oversampling more complex image regions
after a short pre-training phase can lead to faster convergence. To
achieve this, a data efficient method inspired by the work in [45] is
employed together with image tiling. On top of the pre-processing steps
described in Section 2.1, every 512 × 512 image is tiled into 64 tiles
of size 64 × 64, and the batch size is increased by a factor of 64 to
256. The SRN hyperparameters are, however, taken based on the search
described in Section 2.3, to keep the same amount of information in a
single step compared to the baseline using the full images. The SRN is
trained using uniform SGD without replacement for  = 10 epochs. At
epoch  , the loss is stored and ranked for each training sample. From
this ranking, a probability distribution is derived for the subsequent
training epochs.

2.5. Numerical methods

Unstructured hierarchical cartesian meshes are created with the
massively parallel mesh generator of m-AIA [46]. The meshes are based
on an octree structure derived from iteratively subdividing an initial
cube surrounding the region of interest (ROI), i.e., the nasal cavity [47].
In more detail, the initial cube is decomposed into eight sub-cubes,
which are then further refined for a pre-defined number of steps. The

parent–child relations of cubes and sub-cubes constitute the octree
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structure of the mesh. Cells that are located outside the ROI are deleted.
For the parallelization of the computation, the domain is decomposed
by a Hilbert decompositioning method using space filling curves as
described in [48] on a pre-defined refinement level. Z-curves [49] are
additionally used to index the remaining levels. The resulting mesh is
stored by efficient parallel I/O routines using the network common data
form (NetCDF) format [50]. For more details, the reader is referred
to [46].

Simulations are conducted with a thermal version of the LBM. The
governing equations are based on the BGK model approximation [51]:
𝜕𝒇
𝜕𝑡

+ 𝝃 ⋅ 𝒇 = −𝜔(𝒇 − 𝒇 𝒆𝒒), (4)

𝒇 𝑛𝑒𝑞 = 𝒇 − 𝒇 𝑒𝑞 , (5)

with the particle probability distribution functions (PPDFs)
𝒇 = 𝒇 (𝒙, 𝝃, 𝑡), the time 𝑡, the location 𝒙, the microscopic velocity 𝝃,
the collision frequency 𝜔, and the Boltzmann-Maxwellian distribution
function 𝒇 𝑒𝑞 . In [51], Eq. (4) is discretized for a small time increment
𝛿𝑡 yielding

𝒇 𝒊(𝒙 + 𝝃𝒊𝛿𝑡, 𝝃, 𝑡 + 𝛿𝑡) − 𝒇 𝒊(𝒙, 𝝃𝒊, 𝑡) =

− 𝜔(𝒇 𝒊(𝒙, 𝝃𝒊, 𝑡) − 𝒇 𝑒𝑞
𝑖 (𝒙, 𝝃𝒊, 𝑡)), (6)

using on the D3Q27 model [52], with 𝑖 ∈ {1, 2, 3,… , 𝑄} directions. The
discrete Boltzmann-Maxwellian distribution function reads as

𝒇 𝑒𝑞
𝑖 = 𝑤𝑖𝜌

⎛

⎜

⎜

⎝

1 +
𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

+ 1
2

(

𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

)2

− 𝒖 ⋅ 𝒖
2𝑐2𝑠

⎞

⎟

⎟

⎠

, (7)

with the isothermal speed of sound 𝑐𝑠 = 1∕
√

3, the density 𝜌, the fluid
velocity vector 𝒖 = (𝑢, 𝑣,𝑤)𝑇 , and the weight coefficients 𝑤𝑖 [52].

To simulate the temperature distribution, a second set of PPDFs 𝑔𝑖
is solved by

𝒈𝒊(𝒙 + 𝝃𝒊𝛿𝑡, 𝝃𝒊, 𝑡 + 𝛿𝑡) − 𝒈𝒊(𝒙, 𝝃𝒊, 𝑡) =

− 𝜔𝑡(𝒈𝒊(𝒙, 𝝃𝒊, 𝑡) − 𝒈𝑒𝑞𝑖 (𝒙, 𝝃𝒊, 𝑡))

+ (𝜔𝑡 − 𝜔)
(

𝝃 ⋅ 𝒖 − 𝒖 ⋅ 𝒖
2

)

(𝒇 𝒊(𝒙, 𝝃𝒊, 𝑡) − 𝒇 𝑒𝑞
𝑖 (𝒙, 𝝃𝒊, 𝑡)), (8)

where the thermal collision frequency 𝜔𝑡 is related to the thermal
conductivity 𝜅 by [53]

𝜅 = 𝑐2𝑠

(

𝛿𝑡
𝜔𝑡

− 𝛿𝑡
2

)

. (9)

The thermal equilibrium distribution reads

𝒈𝑒𝑞𝑖 = 𝑤𝑖𝜌𝑐
2
𝑠

⎡

⎢

⎢

⎣

𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

+

(

𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

)2

− 𝒖2

𝑐2𝑠
+ 1

2

(

𝝃2𝒊
𝑐2𝑠

−𝐷

)]

+ 𝐸𝑓 𝑒𝑞
𝑖 ,

(10)

with the spatial dimension 𝐷, the total energy 𝐸 = 𝜖 + 1∕2|𝒖|2, the
internal energy 𝜖 = (𝐷𝑐2𝑠 )∕2𝑇 , the velocity magnitude |𝒖|, and the
temperature 𝑇 .

The macroscopic variables 𝜌, 𝒖, and 𝑇 can be computed by

𝜌 =
𝑄
∑

𝑖=1
𝑓𝑖, (11)

𝜌𝒖 =
𝑄
∑

𝑖=1
𝝃𝑖 ⋅ 𝑓𝑖 (12)

𝜌𝐸 =
𝑄
∑

𝑖=1
𝑔𝑖. (13)

The static pressure 𝑝𝑠 is obtained from the density by 𝑝𝑠 = 𝑐2𝑠 𝜌. Note that
𝑝𝑡𝑜𝑡 is the total pressure, expressed as the sum of the static pressure 𝑝𝑠
and the dynamic pressure 𝑝 = 𝜌|𝒖|2∕2.
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𝑑

Fig. 5. MSE, time of submission, and the number of iterations for each HPO
configuration. The best performing job is highlighted by a black arrow.

An interpolated bounce-back scheme is used to satisfy the no-slip
condition at the inner walls of the nasal cavity [54]. Furthermore,
the inner walls are modeled as isothermal walls at body temperature
𝑇𝐵 = 309.15 K. At the inlets (nostrils), the equation of Saint-Venant and
Wantzel is applied [1] and the temperature is set to the ambient air
temperature of 𝑇𝑎𝑚𝑏 = 293.15 K. At the outlet (pharynx), the pressure is
iteratively adapted to fit the prescribed volume flux 𝑉̇𝑃 = 250 ml∕s [1],
i.e., to the corresponding Reynolds number 𝑅𝑒𝑃 = (𝑉̇𝑃 ⋅ 𝑑𝑃 )∕(𝐴𝑃 ⋅ 𝜈),
which is calculated from the hydraulic diameter of the pharynx 𝑑𝑃 ,
the pharyngeal cross-sectional area 𝐴𝑃 , and the kinematic viscosity 𝜈 =
1.63 × 10−5 m2∕s. The velocity and temperature are extrapolated from
the inner cells. All computational meshes have a resolution of 𝛥𝑥 =
0.09 mm to accurately resolve thin channels and boundary layers [1,55].

3. Results

In this section, the effect of HPO and data efficiency on the baseline
SRN is analyzed. The performance of the trained SRNs is evaluated by
means of simulating the flow through 3D models extracted from CT
data. Section 3.1 focuses on identifying suitable hyperparameters with
HPO. The outcome is used in Section 3.2 to further accelerate the ML
pipeline with a data efficient method, without degrading its predictive
capabilities. Section 3.3 concentrates on a comparison between simula-
tion results based on the original, interpolated, and SRN-generated CT
data.

3.1. Hyperparameter tuning of the network

The HPO experiment described in Section 2.3 is conducted on the
GPU partition of the JURECA-DC cluster [56] installed at the Jülich
Supercomputing Centre (JSC), Forschungszentrum Jülich. Each node
is equipped with four NVIDIA A100 GPUs and two AMD EPYC 7742
CPU with 64 cores clocked at 2.25 GHz. The total computation budget
assigned to the HPO experiment is 24 h on 8 GPU nodes. In total, 407
configurations are investigated.

In Fig. 5, the objective (MSE) achieved with all investigated hy-
perparameter configurations is plotted against the time of submission
to the master node. Each dot represents a single configuration and is
colored by the number of training iterations. The best performing job
is highlighted by a black arrow in Fig. 5. Its configuration, i.e., using
𝐾𝑆 = 3, 𝑛𝐹𝐶 = 96, 𝐿𝑅 = 0.017, and SGD as optimizer, see Table 1, is
chosen for the next steps.
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3.2. Data efficient training with tiled images

In the following, the SR results obtained using the baseline network
and the data efficient method described in Section 2.4 are validated.
In addition to the MSE, the following commonly used metrices are
reported to measure the quality of the SR-generated images in terms of
similarity between low-resolution and super-resolved images: structural
similarity index measure (SSIM), which quantifies the perceived quality
by the human visual system, and peak signal to noise ratio (PSNR),
which quantifies the differences at the pixel level [57].

Fig. 6 shows the data efficient method using tiled images [45] (SGD-
biased) to be faster and more stable to achieve a similar validation
SR quality (in terms of MSE loss, SSIM, and PSNR) compared to the
baseline U-Net (SGD-baseline). The hyperparameters tuned for the
baseline are re-used and the method parameter  (representing the pre-
training epochs) is set to  = 10 as suggested in the original paper [45].
n fact, the method achieves in only ≈6 h a similar SR quality compared
o training the baseline, which requires ≈14 h, i.e., a ≈2.3× speed-up is
chieved. This allows the applications early stopping criteria and save
ime during training without affecting the SR quality. An early stopping
riterion is used for the validation MSE loss, which stops training if the
alidation MSE does not improve for 3 consecutive validation epochs.
hen, the best checkpoint is selected (after 19 epochs, ≈5 h and 30
inutes of run time) out of 4 independent runs with different random

eeds to run the simulations, see Section 3.3.

.3. CFD simulations

For each of the three test patients I, II, and III, five simulations are
onducted:

(A) based on the fine CT data-set (ground truth),
(B) the coarse CT data-set (input to SRN),
(C) interpolation,
(D) the output of the baseline SRN,
(E) and the output from accelerated SRN training using the data

efficient method [45] and image tiling.

ach simulation is run on 5 nodes (20 GPUs) of the NVIDIA A100 GPU
artition of the JURECA-DC cluster [56]. In case (C), coarse input data
s up-sampled along the 𝑧-axis with cubic spline interpolation.

The performance of the SRN is first assessed by comparing the 3D
asal cavity models that are extracted from the CT data of cases A-E.
hey are the basis for each CFD simulation. Fig. 7 illustrates the 3D
asal cavity models of each patient and case, which are obtained using
he automated pipeline presented in [2]. In Fig. 7(a) it is shown that in
ases I(B) and I(C) the airway in the inferior turbinate of the right nasal
assage (from the patient’s view) is narrowed by an obstacle (red cir-
les), which is not present at the same location for cases I(A), I(D), and
(E). Together with the middle and the superior turbinates, the inferior
urbinates play an important role by warming and humidifying inspired
ir and by regulating nasal airflow, see Fig. 1(b). Similar observations
an be made for test patient II in Fig. 7(b), except that the obstacle
t the inferior turbinates is larger and blocks almost the complete
urbinate of the left nasal passage (green circles). Additionally, in cases
I(B), II(C), and II(E) all frontal sinuses are connected, whereas in cases
I(A) and II(D) only the right part of the frontal sinuses is included.
ig. 7(c) reveals narrowed inferior turbinates in the left and right nasal
assages for cases III(B) and III(D) (blue circles), which are not visible
n cases III(A), III(D), and III(E). For all three test patients, the edges of
he inflow areas of case (B) are less smooth compared to the remaining
ases.

Apart from comparing the 3D models of cases A-E, analyzing nu-
erical properties helps to assess the predictive performance of the

RN. Table 2 shows 𝑅𝑒𝑝, the number of cells 𝑁𝑐 , the total pressure
oss between the inlets and outlet 𝛥𝑝𝑡𝑜𝑡, and the temperature increase
480

etween the inlets and outlet 𝛥𝑇 for all cases. Percentage deviations of
Fig. 6. Validation mean-squared error (MSE) loss, structural similarity index measure
(SSIM), and peak signal to noise ratio (PSNR) of the baseline SGD (using full images)
and the SGD-biased method (using tiled images).

cases (B)–(E) compared to the reference case (A) are given in brackets.
The pressure loss 𝛥𝑝 and temperature increase 𝛥𝑇 are defined as

𝛥𝑝𝑡𝑜𝑡 =
1
𝑁

𝑁𝑎
∑

(

1
𝐻

𝐻𝑜𝑢𝑡
∑

𝑝𝑖𝑡𝑜𝑡,𝑗 − 𝑝𝑎𝑚𝑏

)

, (14)

𝑎 𝑖=1 𝑜𝑢𝑡 𝑗=0
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Fig. 7. 3D models based on the fine CT data-set (A), coarse CT data-set (B), interpolated CT data (C), CT data generated by the baseline SRN (D), and CT data generated by
the SRN improved using the data efficient method (E). The inflow areas (nostrils) are colored blue and the outflow area (pharynx) is colored red. The colored circles highlight
examples for differences between the five cases.
𝛥𝑇 = 1
𝑁𝑎

𝑁𝑎
∑

𝑖=1

(

1
𝐻𝑜𝑢𝑡

𝐻𝑜𝑢𝑡
∑

𝑗=0
𝑇 𝑖
𝑗 − 𝑇𝑎𝑚𝑏

)

, (15)

where 𝑁𝑎 is the number of time steps used for temporal averaging, 𝐻𝑜𝑢𝑡
is the number of boundary cells at the pharynx, and 𝑝𝑎𝑚𝑏 is the ambient
pressure. Additionally, the average absolute deviations (AAD) of cases
(B)–(E) compared to case (A) are provided.

In all cases, the Reynolds numbers at the pharynx based on the two
SRN outputs show the smallest deviations from 𝑅𝑒𝑃 based on the fine
CT data. In fact, 𝑅𝑒𝑝 of case (E) has with AAD = 0.6% the smallest
mean deviation. The same trend is observed for the number of cells
and for results from flow computations in terms of 𝛥𝑝𝑡𝑜𝑡 and 𝛥𝑇 , where
quantities based on the SR-generated CT data have the lowest AADs.
Whereas case (E) has a lower AAD for 𝛥𝑝𝑡𝑜𝑡 (1.3%) compared to case
(D) (2.5%), case (D) performs slightly better for 𝛥𝑇 (0.2%) compared
to case (E) (0.3%). Although computations based on the interpolated
data have a high accuracy for some cases (𝛥𝑝𝑡𝑜𝑡 for patient III, 𝛥𝑇 for
patient I), large fluctuations in most of the remaining cases (𝛥𝑝𝑡𝑜𝑡 for
patient I and II, 𝛥𝑇 for patients II and III) indicate a low reliability.
Computations based on coarse CT data show no advantage in any of
the cases.

Figs. 8 and 9 provide a quantitative assessment of the simulation
results of the different cases. The figures show the total pressure loss
481
𝛥𝑝(𝑠) = 𝑝𝑎𝑚𝑏 − 𝑝̂(𝑠) and temperature increase 𝛥𝑇 (𝑠) = 𝑇̂ (𝑠) − 𝑇𝑎𝑚𝑏,
where 𝑝̂(𝑠) and 𝑇̂ (𝑠) are area-averaged quantities at a downstream
cross section of a location 𝑠 along the left or right centerline. The left
and right centerlines of case (A) of each test patient are illustrated in
the corresponding subfigures. The normal vector of a cross section is
computed based on two consecutive locations along the corresponding
centerline. The area of a cross section is determined with a region
growing algorithm whose seed point lies at 𝑠. The centerlines are
computed using the Vascular Modeling Toolkit (VMTK) [58].

The results shown in Figs. 8 and 9 do not start and end at the
first and last location of a centerline. At these locations, the cross
sections tend to cut through the inlets or outlet. Here, area-averaged
flow fields do not represent the flow realistically. Therefore, the plots
in Figs. 8 and 9 are bounded by locations inside of the nasal cavity,
whose start and end points are illustrated for each test patient by the
dashed black lines. Note that large fluctuations along the centerlines
can occur due to turbinates being connected to the maxillary sinuses in
some cross sections. In other cross sections only the flow through the
turbinates is computed. Small fluctuations occur when two consecutive
cross-sectional areas intersect.
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Fig. 8. Total pressure loss averaged over cross-sectional areas along centerlines through the left (red) and right (violet) nasal passages. The black lines represent simulation results
based on the CT data with high resolution (A), green lines simulation results based on CT data with low resolution (B), blue lines simulations results based on interpolated CT
data (C), orange lines simulation results based on the CT data generated by the SRN (D), and magenta lines stand for improved results of the SRN by employing the data efficient
method (E). The start and end points in the nasal cavity are illustrated for each test patient by the dashed black lines.
Figs. 8(a) and 8(b) reveal that the pressure loss is continuously
overpredicted in case I(B) and underpredicted in case I(C). The sim-
ulation of case I(D) slightly underpredicts the pressure loss, whereas
482
the results of case I(E) are in line with those from case I(A). For test
patient II, Figs. 8(c) and 8(d) show that case II(B) tends to underpredict
the pressure loss. The pressure loss in case II(C) coincides well with case
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Fig. 9. Total temperature increase averaged over cross-sectional areas along centerlines through the left (red) and right (violet) nasal passages. The black lines represent simulation
results based on the CT data with high resolution (A), green lines simulation results based on CT data with low resolution (B), blue lines simulations results based on interpolated
CT data (C), orange lines simulation results based on the CT data generated by the SRN (D), and magenta lines stand for improved results from the SRN by employing the data
efficient method (E). The start and end points in the nasal cavity are illustrated for each test patient by the dashed black lines.
II(A) at the beginning of the left and right centerlines in Figs. 8(c) and
8(d), but is then characterized by strong fluctuations and overpredicts
the pressure loss further downstream towards the end of the centerlines.
Although both cases II(D) and II(E) are in good agreement with case
II(A), case II(E) predicts the pressure loss near the outlet better than
483
case II(D). Fig. 8(e) shows that the cases III(C)–III(E) have no relevant
deviations of the pressure loss from case III(A) along the left centerline.
However, Fig. 8(f) demonstrates a large underprediction of the pressure
loss in case III(C) in the first half of the right centerline compared to
case III(A), whereas the cases III(D) and III(E) match well with case



Future Generation Computer Systems 159 (2024) 474–488X. Liu et al.
Table 2
The Reynolds number at the pharynx 𝑅𝑒𝑃 , the number of cells 𝑁𝑐 , the total pressure
loss between the inlets and outlet 𝛥𝑝𝑡𝑜𝑡, and the temperature increase between the inlets
and outlet 𝛥𝑇 are given for simulations of each patient I, II, and III, based on the CT
data with high resolution (A), the CT data with low resolution (B), interpolation (C),
the SRN (D), and the data efficient method (E). The quantities in brackets provide the
deviations of cases (B), (C), (D), and (E) to case (A). Furthermore, the average absolute
deviation is provided for cases (B), (C), (D), and (E) compared to case (A).

Cases 𝑅𝑒𝑃 𝑁𝑐 [×106] 𝛥𝑝𝑡𝑜𝑡 [Pa] 𝛥𝑇 [K]

I(A) 1580.7 114 9.116 11.660
I(B) 1526.1(−3.5%) 116(+1.8%) 8.596(−6.7%) 11.431(−1.5%)
I(C) 1548.7(−2.0%) 116(+1.8%) 7.257(−20.4%) 11.646(−0.1%)
I(D) 1562.8(−1.1%) 114(0.0%) 8.677(−4.8%) 11.637(−0.2%)
I(E) 1567.2(−0.9%) 114(0.0%) 8.827(−3.2%) 11.683(+0.7%)

II(A) 856.3 187 3.725 14.460
II(B) 840.1(−1.9%) 200(+7.0%) 3.398(−8.8%) 14.562(+0.7%)
II(C) 821.9(−4.0%) 196(+4.8%) 3.934(+5.6%) 14.650(+1.3%)
II(D) 842.6(−1.6%) 198(−1.0%) 3.820(+2.6%) 14.457(−0.1%)
II(E) 849.1(−0.8%) 199(−0.5%) 3.746(+0.6%) 14.475(+0.1%)

III(A) 1264.7 246 5.292 14.600
III(B) 1220.7(−3.5%) 248(+1.8%) 5.860(+10.7%) 14.439(−1.1%)
III(C) 1255.4(−0.7%) 243(−1.2%) 5.267(−0.5%) 14.326(−1.9%)
III(D) 1262.3(−0.2%) 246(−0.8%) 5.298(+0.1%) 14.564(−0.2%)
III(E) 1262.7(−0.2%) 246(−0.8%) 5.279(−0.2%) 14.597(0.0%)

AAD(B) 3.0% 3.5% 8.7% 1.1%
AAD(C) 2.2% 2.6% 8.8% 1.1%
AAD(D) 1.0% 0.6% 2.5% 0.2%
AAD(E) 0.6% 0.4% 1.3% 0.3%

III(A). Figs. 8(e) and 8(f) display a continuously overpredicted pressure
loss for case III(B) in both nasal passages.

In general, the temperature distributions in Fig. 9 show less de-
viations from the reference case compared to the pressure loss in
Fig. 8. Fig. 9(a) reveals that the temperature increase for cases I(B)–
I(E) is in line with case I(A), except for fluctuations of case I(B) at
the mid locations of the left centerline. Fig. 9(b) presents an overall
good agreement between all cases along the right centerline, except for
slight underpredictions at the mid locations for the cases I(B) and I(C).
Fig. 9(c) indicates that cases II(B) and II(C) tend to underpredict the
temperature increase in the first three quarters of the left centerline,
the temperature increase is, however, captured well by the cases II(D)
and II(E) at the same locations. All cases match well near the outlet.
The results for the right centerline in Fig. 9(d) show that only the cases
II(D) and II(E) come close to the temperature increase of case II(A).
Cases II(B) and II(C) have the tendency to overpredict the temperature
increase, except for the part of the centerline near the outlet. In case of
patient III, Fig. 9(e) indicates that there is a good agreement between
the temperature increase for all cases in the left nasal passage. How-
ever, it is from Fig. 9(f) evident that the temperature increase of case
III(B) is underpredicted in the anterior part of the right nasal cavity,
compared to case III(A). Case III(C) is characterized by few deviations
from case III(A), e.g., shortly before the outflow region at the pharynx.
The cases III(D) and III(E) show large fluctuations at the mid locations
of the right centerline, but recover towards the outlet.

An example of a detailed view on the flow field is given in terms
of a coronal cross section through the right nasal passage of patient
III in Fig. 10. Since the flow fields of the cases III(D) and III(E) show
only minor qualitative differences, only case III(E) is depicted. The flow
fields of the cases III(A) in Fig. 10(a) and III(E) in Fig. 10(d) show
no significant differences. The flow field of case III(B) in Fig. 10(b)
provides insights about the reasons for the continuous overprediction
of the pressure loss visible in Fig. 8(f). Not only the inferior turbinate
is narrowed by an obstacle, as already shown in Fig. 7(c), but also
the middle and superior turbinates. This can be inferred from the air
not flowing continuously between the nostril and the pharynx through
all turbinates, see Fig. 10(b). Furthermore, the nostril and, therefore,
the main inflow direction, visualized by a white arrow, differ in case
III(B) from the remaining cases. The diagonal main inflow direction
484
Fig. 10. Total pressure loss at the coronal cross sections represented by the dashed red
line for the cases III(A), III(B), III(C), and III(E). The main inflow direction is expressed
by the white arrows.

in the remaining cases distributes incoming air to all turbinates. In
contrast, incoming air in case III(B) is first led to the upper airway-
nostril interface and then guided towards the narrowed turbinates
horizontally. The combination of deflected incoming air and narrowed
turbinates causes the overall high pressure loss. Fig. 10(c) indicates that
there is less narrowing of the turbinates for case III(C), i.e., incoming air
flows into the superior turbinate, which is hindered in case III(B). Addi-
tionally, the main inflow direction does not deviate from case III(A) and
incoming air is also guided towards the superior and middle turbinates.
The underprediction in the anterior part of the right nasal passage is
induced by the cross sections along the right centerline cutting only
through the superior turbinate with a relatively low pressure loss in
this region, compared to a higher combined pressure loss in all three
turbinates in the cases III(A) and III(D), and the much higher pressure
loss in the superior turbinate in case III(B).

The previously described observations are additionally underlined
by results shown in Fig. 11. Here, streamlines through the right nasal
passage are depicted for the cases III(A), III(B), III(C), and III(E). The
streamlines start at the right inlet (blue area), end at the outlet (red
area), and are colored by the velocity magnitude |𝒖|. Again, case III(D)
is excluded as it is only marginally different to case III(E). Similar to
Fig. 10, the streamlines of the cases III(A) in Fig. 11(a) and III(E) in
Fig. 11(d) show no significant differences. In both cases, the incoming
air is distributed smoothly to all three turbinates. In contrast, the
incoming air is deflected by the blocked channels and the streamlines
get spread all over the nasal cavity and also distribute into parts of
the ethmoidal sinuses in cases III(B) and III(C), see Figs. 11(b) and
11(c). In case III(B), the streamlines through the inferior turbinate are
characterized by spinning motion which indicates a deflected flow at
the narrowed passage. Furthermore, as a consequence of the incorrect
prediction of the inflow region, the incoming streamlines collide with
the upper airway-nostril interface before they find their way towards
the turbinates. In case III(C), the streamlines are deflected to the outer
part of the turbinates which are located higher in the 𝑧-direction than
the blocked part.
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Fig. 11. Streamlines through the right nasal passage for the cases III(A), III(B), III(C),
and III(E), colored by the velocity magnitude |𝒖|.

4. Summary and discussion

In this study, an SRN pipeline is developed to increase the through-
plane resolution of CT data from 3.0 mm to 1.0 mm. The CT data
are used to reconstruct 3D models of the nasal cavity, which define
the spatial domain for numerical simulations of respiratory flows. A
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sufficient through-plane resolution is required for reliable CFD sim-
ulations. First, the hyperparameters of the SRN are determined with
an automated HPO framework. Second, a data efficient method [45]
has been integrated into the SRN pipeline in combination with image
tiling, improving the convergence speed and model reliability, without
degrading its predictive performance. Finally, it has been analyzed how
simulation results of flow through 3D models reconstructed from the
SRN-generated data compete with simulation results based on CT data
of a reference case with a 1.0 mm resolution, a case with a coarse
3.0 mm resolution, and a case with data that have been interpolated
from 3.0 mm to 1.0 mm.

It could be shown that geometric parameters of the 3D models
generated based on the CT data from the optimized SRN have the
smallest deviations from the reference case. Furthermore, simulations
based on the CT data generated by the optimized SRN have only
negligible deviations from the reference case in terms of the physical
quantities pressure loss and temperature increase between the inlets
(nostrils) and outlet (pharynx). In contrast, simulations based on coarse
or interpolated data are characterized by large deviations. A further
analysis of the pressure and temperature distributions along centerlines
through the left and right nasal passages confirmed that simulations
based on SRN-generated CT data outperform simulations based on
coarse or interpolated CT data. These findings are consistent with
the findings in [30,31], who state that an increased slice thickness
leads to decreased geometric accuracy, especially in regions with large
changes in surface geometry along the scan axis. The human nasal
cavity is a complex and intricate geometry, and, therefore, 3D models
reconstructed from coarse data exhibit low anatomical fidelity and lead
to large deviations in fluid mechanical properties from the ground truth
data. However, they are recovered successfully using an SRN. Hence, if
the original data have a resolution coarser than 1.0 mm, the SRN is a
valid tool to increase the through-plane resolution along the 𝑧-axis and
guarantee reliable respiratory flow simulations.

It should be noted that training the SRN is more expensive than
interpolation. However, once the SRN is trained and saved, inference
on new, unseen data is extremely fast while at the same time the recon-
structions are more accurate and hence also the simulation outputs, as
compared to the interpolation case. When juxtaposing the end-to-end
solution between the two approaches, which both only take maximum
a few seconds on desktop hardware, the difference in time-to-solution
is not of importance.

Another important aspect of this study is to build and optimize an
automated pipeline. With the advancement of AutoML methods and
computational power, HPO methods can match or even outperform
human experts [27], making them a great solution to assist medical
professionals that utilize existing ML methods with limited expertise
in the field. A practical HPO method should possess several features:
flexibility, scalability, and efficiency [26]. Bayesian optimization with
asynchronized successive halving is employed due to it’s high effi-
ciency in using a surrogate model and parallel resources. Two types
of hyperparameters are searched in a network, one to control the
learning algorithm and the other one is related to the architecture.
The search space is defined to include both algorithm hyperparameters,
i.e., the optimizer and learning rate, and hyperparameters related to the
architecture such as the number of feature channels. The HPO results
reported in Section 3.1 suggest to use more feature channels, which
is consistent with the findings in [21], who state that more feature
channels improve performance.

The data efficient method described in Section 2.4 allows the model
to be focused on relevant image tiles by over-sampling them and avoids
wasting time on easier image tiles by down-sampling them, which
speeds up the learning task. The results described in Section 3.2 suggest
that the method does not only achieve a similar SR quality compared to
the baseline network, the method achieves the results also much faster
than the baseline case. Furthermore, the biasing method leads to more
stable results, i.e., a smaller standard deviation of the MSEs per epoch.
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This is important for CFD-based medical applications because of a high
demand for reliability.

The current study focuses on using a classic network architecture
with multiple optimization steps. It demonstrates the benefit of incorpo-
rating an SRN into an automated respiratory flow simulation pipeline.
In medical SRNs, it is critical to maintain anatomical fidelity of fine-
grain structures, e.g., to be able to do accurate surgery planning. In
a follow-up study, the integration of shape priors of the nasal cavity
into the SRN will be investigated. This way, the learning process might
be able to better capture the underlying anatomy due to its highly
constrained nature [59,60]. In addition, other state-of-the-art HPO
techniques and specific implementations will be investigated and com-
pared for a better understanding of their performance and efficiency.
Evolutionary algorithms have proven to produce good results and are
robust against noise and local minima. Although they comparably
require larger resources [61], they can handle well complex settings
of search space where other optimizers may fail [62]. Therefore, a
larger and more complex search space will be explored by evolutionary
algorithms or other population-based methods.
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