001026692 001__ 1026692
001026692 005__ 20250204113857.0
001026692 0247_ $$2doi$$a10.1021/acsaem.4c00275
001026692 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03506
001026692 0247_ $$2pmid$$a38817849
001026692 0247_ $$2WOS$$aWOS:001226106500001
001026692 037__ $$aFZJ-2024-03506
001026692 082__ $$a540
001026692 1001_ $$0P:(DE-Juel1)188576$$aConcepción, Omar$$b0$$eCorresponding author
001026692 245__ $$aRoom Temperature Lattice Thermal Conductivity of GeSn Alloys
001026692 260__ $$aWashington, DC$$bACS Publications$$c2024
001026692 3367_ $$2DRIVER$$aarticle
001026692 3367_ $$2DataCite$$aOutput Types/Journal article
001026692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1717743990_3800
001026692 3367_ $$2BibTeX$$aARTICLE
001026692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026692 3367_ $$00$$2EndNote$$aJournal Article
001026692 520__ $$aCMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1–xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C–100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
001026692 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001026692 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026692 7001_ $$0P:(DE-HGF)0$$aTiscareño-Ramírez, Jhonny$$b1
001026692 7001_ $$0P:(DE-HGF)0$$aChimienti, Ada Angela$$b2
001026692 7001_ $$0P:(DE-HGF)0$$aClassen, Thomas$$b3
001026692 7001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, Agnieszka Anna$$b4
001026692 7001_ $$0P:(DE-HGF)0$$aTomadin, Andrea$$b5
001026692 7001_ $$0P:(DE-HGF)0$$aSpirito, Davide$$b6
001026692 7001_ $$0P:(DE-HGF)0$$aPisignano, Dario$$b7
001026692 7001_ $$0P:(DE-HGF)0$$aGraziosi, Patrizio$$b8
001026692 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b9
001026692 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing Tai$$b10
001026692 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11$$ufzj
001026692 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b12
001026692 7001_ $$0P:(DE-HGF)0$$aRoddaro, Stefano$$b13
001026692 7001_ $$0P:(DE-HGF)0$$aVirgilio, Michele$$b14
001026692 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b15$$ufzj
001026692 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.4c00275$$gVol. 7, no. 10, p. 4394 - 4401$$n10$$p4394 - 4401$$tACS applied energy materials$$v7$$x2574-0962$$y2024
001026692 8564_ $$uhttps://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.pdf$$yOpenAccess
001026692 8564_ $$uhttps://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.gif?subformat=icon$$xicon$$yOpenAccess
001026692 8564_ $$uhttps://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026692 8564_ $$uhttps://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026692 8564_ $$uhttps://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026692 8767_ $$d2024-06-03$$eHybrid-OA$$jPublish and Read
001026692 909CO $$ooai:juser.fz-juelich.de:1026692$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b0$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b10$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
001026692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b15$$kFZJ
001026692 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001026692 9141_ $$y2024
001026692 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026692 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026692 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026692 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001026692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001026692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026692 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001026692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001026692 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001026692 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001026692 980__ $$ajournal
001026692 980__ $$aVDB
001026692 980__ $$aUNRESTRICTED
001026692 980__ $$aI:(DE-Juel1)PGI-9-20110106
001026692 980__ $$aAPC
001026692 9801_ $$aAPC
001026692 9801_ $$aFullTexts