TY - JOUR
AU - Concepción, Omar
AU - Tiscareño-Ramírez, Jhonny
AU - Chimienti, Ada Angela
AU - Classen, Thomas
AU - Corley-Wiciak, Agnieszka Anna
AU - Tomadin, Andrea
AU - Spirito, Davide
AU - Pisignano, Dario
AU - Graziosi, Patrizio
AU - Ikonic, Zoran
AU - Zhao, Qing Tai
AU - Grützmacher, Detlev
AU - Capellini, Giovanni
AU - Roddaro, Stefano
AU - Virgilio, Michele
AU - Buca, Dan
TI - Room Temperature Lattice Thermal Conductivity of GeSn Alloys
JO - ACS applied energy materials
VL - 7
IS - 10
SN - 2574-0962
CY - Washington, DC
PB - ACS Publications
M1 - FZJ-2024-03506
SP - 4394 - 4401
PY - 2024
AB - CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1–xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C–100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
LB - PUB:(DE-HGF)16
C6 - 38817849
UR - <Go to ISI:>//WOS:001226106500001
DO - DOI:10.1021/acsaem.4c00275
UR - https://juser.fz-juelich.de/record/1026692
ER -