001     1026692
005     20250204113857.0
024 7 _ |a 10.1021/acsaem.4c00275
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03506
|2 datacite_doi
024 7 _ |a 38817849
|2 pmid
024 7 _ |a WOS:001226106500001
|2 WOS
037 _ _ |a FZJ-2024-03506
082 _ _ |a 540
100 1 _ |a Concepción, Omar
|0 P:(DE-Juel1)188576
|b 0
|e Corresponding author
245 _ _ |a Room Temperature Lattice Thermal Conductivity of GeSn Alloys
260 _ _ |a Washington, DC
|c 2024
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1717743990_3800
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1–xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C–100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tiscareño-Ramírez, Jhonny
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chimienti, Ada Angela
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Classen, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Corley-Wiciak, Agnieszka Anna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tomadin, Andrea
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Spirito, Davide
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pisignano, Dario
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Graziosi, Patrizio
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhao, Qing Tai
|0 P:(DE-Juel1)128649
|b 10
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 11
|u fzj
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Roddaro, Stefano
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Virgilio, Michele
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 15
|u fzj
773 _ _ |a 10.1021/acsaem.4c00275
|g Vol. 7, no. 10, p. 4394 - 4401
|0 PERI:(DE-600)2916551-9
|n 10
|p 4394 - 4401
|t ACS applied energy materials
|v 7
|y 2024
|x 2574-0962
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026692/files/concepci%C3%B3n-et-al-2024-room-temperature-lattice-thermal-conductivity-of-gesn-alloys.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026692
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21