001     1026694
005     20250204113858.0
024 7 _ |a 10.1021/acs.jpcb.4c01422
|2 doi
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03508
|2 datacite_doi
024 7 _ |a 38747367
|2 pmid
024 7 _ |a WOS:001225962300001
|2 WOS
037 _ _ |a FZJ-2024-03508
082 _ _ |a 530
100 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 0
245 _ _ |a Thermal Density Fluctuations and Polymorphic Phase Transitions of Ethane (C 2 D 6 ) in the Gas/Liquid and Supercritical States
260 _ _ |a Washington, DC
|c 2024
|b Americal Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738068290_32537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The phase behavior of the liquid C2D6 below and above the critical point was investigated using small-angle neutron scattering (SANS) in temperature and pressure ranges from 10 to 45 °C and 20 to 126 bar, respectively. The scattering of thermal fluctuations of the molecular density was determined and thus the gas–liquid and Widom lines. At the same time, we observed additional scattering of droplets of more densely packed C2D6 molecules above the gas–liquid line and in the supercritical fluid regime from just below the critical point for all temperatures at about ΔP = 10 bar above the Widom line. This line is interpreted as the Frenkel line. These results are consistent with our previous studies on CO2 and thus indicate a universal phase behavior for monomolecular liquids below and above the critical point. The interpretation of the Frenkel line as the lower limit of a polymorphic phase transition is in contrast to the usual interpretation as the limit of a dynamic process. The correlation lengths (ξ) of the thermal density fluctuations at the critical point and at the Widom line are determined between 20 and 35 Å and thus in the range of the droplet radius between 60 and 80 Å. These long-range fluctuations appear to suppress the formation of droplets, which can only form at about 10 bar above the critical point and the Widom line when ξ becomes smaller than 10 Å.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Kohlbrecher, Joachim
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schwahn, Dietmar
|0 P:(DE-Juel1)130962
|b 2
773 _ _ |a 10.1021/acs.jpcb.4c01422
|g Vol. 128, no. 20, p. 5072 - 5082
|0 PERI:(DE-600)2006039-7
|n 20
|p 5072 - 5082
|t The journal of physical chemistry / B
|v 128
|y 2024
|x 1520-6106
856 4 _ |u https://juser.fz-juelich.de/record/1026694/files/pipich-et-al-2024-thermal-density-fluctuations-and-polymorphic-phase-transitions-of-ethane-%28c2d6%29-in-the-gas-liquid-and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1026694
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130893
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130962
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21