001026942 001__ 1026942
001026942 005__ 20250204113858.0
001026942 0247_ $$2doi$$a10.1002/celc.202400146
001026942 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03534
001026942 0247_ $$2WOS$$aWOS:001234783100001
001026942 037__ $$aFZJ-2024-03534
001026942 082__ $$a540
001026942 1001_ $$0P:(DE-Juel1)179439$$aÜnal, Leyla$$b0
001026942 245__ $$aIn‐Vitro Electrochemical Prelithiation: A Key Performance‐Boosting Strategy for Carbon Nanotube‐Containing Silicon‐Based Negative Electrodes in Li‐Ion Batteries
001026942 260__ $$aWeinheim$$bWiley-VCH$$c2024
001026942 3367_ $$2DRIVER$$aarticle
001026942 3367_ $$2DataCite$$aOutput Types/Journal article
001026942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725619494_24232
001026942 3367_ $$2BibTeX$$aARTICLE
001026942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026942 3367_ $$00$$2EndNote$$aJournal Article
001026942 500__ $$aThe authors acknowledge the Federal Ministry of Education and Research of Germany (BMBF) for funding this work through the projects, PräLi (03XP0238X) and ProMIZ (13XP0397B). Open-Access funding enabled and organized by Projekt DEAL.
001026942 520__ $$aPrelithiation technology has emerged as an enabling approach towards the practical deployment of Silicon negative electrode-based Li-Ion batteries, leading to significant advancement in initial Coulombic efficiency (ICE), energy density and cycle life. In this study, an electrochemical prelithiation has been applied to Multi-Walled Carbon Nanotubes (MWCNTs)-containing Silicon-rich Silicon/Graphite-based negative electrode, eliminating almost ~51.03 % of its first irreversible capacity losses. In contrast, a benchmarking negative electrode utilizing Carbon black (Super P) as conductive additive is found to demonstrate a reduction of ~39.55 % after prelithiation, which is considerably lower compared to MWCNTs-based electrode system. Post-mortem analysis using Energy-dispersive X-ray (EDX) analysis with a Scanning Electron Microscope (SEM) and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) shows disparities between pristine-cycled and prelithiated-cycled negative electrodes. Overall, prelithiation enabled MWCNTs can be regarded as an essential additive component in Silicon-based negative electrode systems for high-energy density Li-Ion batteries.
001026942 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001026942 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026942 7001_ $$0P:(DE-Juel1)203331$$aMaccio-Figgemeier, Viviane$$b1
001026942 7001_ $$00000-0001-8834-2766$$aGebresilassie Eshetu, Gebrekidan$$b2
001026942 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b3$$eCorresponding author
001026942 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202400146$$gp. e202400146$$n17$$pe202400146$$tChemElectroChem$$v11$$x2196-0216$$y2024
001026942 8564_ $$uhttps://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.pdf$$yOpenAccess
001026942 8564_ $$uhttps://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.gif?subformat=icon$$xicon$$yOpenAccess
001026942 8564_ $$uhttps://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026942 8564_ $$uhttps://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026942 8564_ $$uhttps://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026942 8767_ $$8W-2024-00489-b$$d2024-06-03$$eAPC$$jZahlung erfolgt
001026942 909CO $$ooai:juser.fz-juelich.de:1026942$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001026942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179439$$aForschungszentrum Jülich$$b0$$kFZJ
001026942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203331$$aForschungszentrum Jülich$$b1$$kFZJ
001026942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b3$$kFZJ
001026942 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001026942 9141_ $$y2024
001026942 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026942 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001026942 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001026942 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001026942 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026942 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-23$$wger
001026942 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-30T09:22:20Z
001026942 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-30T09:22:20Z
001026942 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001026942 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001026942 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026942 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-30T09:22:20Z
001026942 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001026942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2022$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001026942 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001026942 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001026942 980__ $$ajournal
001026942 980__ $$aVDB
001026942 980__ $$aUNRESTRICTED
001026942 980__ $$aI:(DE-Juel1)IEK-12-20141217
001026942 980__ $$aAPC
001026942 9801_ $$aAPC
001026942 9801_ $$aFullTexts
001026942 981__ $$aI:(DE-Juel1)IMD-4-20141217