001     1026942
005     20250204113858.0
024 7 _ |a 10.1002/celc.202400146
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03534
|2 datacite_doi
024 7 _ |a WOS:001234783100001
|2 WOS
037 _ _ |a FZJ-2024-03534
082 _ _ |a 540
100 1 _ |a Ünal, Leyla
|0 P:(DE-Juel1)179439
|b 0
245 _ _ |a In‐Vitro Electrochemical Prelithiation: A Key Performance‐Boosting Strategy for Carbon Nanotube‐Containing Silicon‐Based Negative Electrodes in Li‐Ion Batteries
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725619494_24232
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The authors acknowledge the Federal Ministry of Education and Research of Germany (BMBF) for funding this work through the projects, PräLi (03XP0238X) and ProMIZ (13XP0397B). Open-Access funding enabled and organized by Projekt DEAL.
520 _ _ |a Prelithiation technology has emerged as an enabling approach towards the practical deployment of Silicon negative electrode-based Li-Ion batteries, leading to significant advancement in initial Coulombic efficiency (ICE), energy density and cycle life. In this study, an electrochemical prelithiation has been applied to Multi-Walled Carbon Nanotubes (MWCNTs)-containing Silicon-rich Silicon/Graphite-based negative electrode, eliminating almost ~51.03 % of its first irreversible capacity losses. In contrast, a benchmarking negative electrode utilizing Carbon black (Super P) as conductive additive is found to demonstrate a reduction of ~39.55 % after prelithiation, which is considerably lower compared to MWCNTs-based electrode system. Post-mortem analysis using Energy-dispersive X-ray (EDX) analysis with a Scanning Electron Microscope (SEM) and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) shows disparities between pristine-cycled and prelithiated-cycled negative electrodes. Overall, prelithiation enabled MWCNTs can be regarded as an essential additive component in Silicon-based negative electrode systems for high-energy density Li-Ion batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Maccio-Figgemeier, Viviane
|0 P:(DE-Juel1)203331
|b 1
700 1 _ |a Gebresilassie Eshetu, Gebrekidan
|0 0000-0001-8834-2766
|b 2
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 3
|e Corresponding author
773 _ _ |a 10.1002/celc.202400146
|g p. e202400146
|0 PERI:(DE-600)2724978-5
|n 17
|p e202400146
|t ChemElectroChem
|v 11
|y 2024
|x 2196-0216
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026942/files/ChemElectroChem%20-%202024%20-%20%C3%9Cnal%20-%20In%E2%80%90Vitro%20Electrochemical%20Prelithiation%20A%20Key%20Performance%E2%80%90Boosting%20Strategy%20for%20Carbon-2.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026942
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179439
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)203331
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165182
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-30T09:22:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-30T09:22:20Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-30T09:22:20Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21