001026960 001__ 1026960
001026960 005__ 20250204113858.0
001026960 0247_ $$2doi$$a10.1088/1361-651X/ad4c81
001026960 0247_ $$2ISSN$$a0965-0393
001026960 0247_ $$2ISSN$$a1361-651X
001026960 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03539
001026960 0247_ $$2WOS$$aWOS:001236131100001
001026960 037__ $$aFZJ-2024-03539
001026960 082__ $$a530
001026960 1001_ $$0P:(DE-Juel1)198952$$aIraki, Tarek$$b0$$eCorresponding author$$ufzj
001026960 245__ $$aAccurate distances measures and machine learning of the texture-property relation for crystallographic textures represented by one-point statistics
001026960 260__ $$aBristol$$bIOP Publ.$$c2024
001026960 3367_ $$2DRIVER$$aarticle
001026960 3367_ $$2DataCite$$aOutput Types/Journal article
001026960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1717505996_12358
001026960 3367_ $$2BibTeX$$aARTICLE
001026960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026960 3367_ $$00$$2EndNote$$aJournal Article
001026960 520__ $$aThe crystallographic texture of metallic materials is a key microstructural feature that is responsible for the anisotropic behavior, e.g. important in forming operations. In materials science, crystallographic texture is commonly described by the orientation distribution function, which is defined as the probability density function of the orientations of the monocrystal grains conforming a polycrystalline material. For representing the orientation distribution function, there are several approaches such as using generalized spherical harmonics, orientation histograms, and pole figure images. Measuring distances between crystallographic textures is essential for any task that requires assessing texture similarities, e.g. to guide forming processes. Therefore, we introduce novel distance measures based on (i) the Earth Movers Distance that takes into account local distance information encoded in histogram-based texture representations and (ii) a distance measure based on pole figure images. For this purpose, we evaluate and compare existing distance measures for selected use-cases. The present study gives insights into advantages and drawbacks of using certain texture representations and distance measures with emphasis on applications in materials design and optimal process control.
001026960 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026960 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026960 7001_ $$0P:(DE-HGF)0$$aMorand, Lukas$$b1
001026960 7001_ $$0P:(DE-HGF)0$$aLink, Norbert$$b2
001026960 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b3
001026960 7001_ $$0P:(DE-HGF)0$$aHelm, Dirk$$b4
001026960 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/1361-651X/ad4c81$$gVol. 32, no. 5, p. 055016 -$$n5$$p055016 -$$tModelling and simulation in materials science and engineering$$v32$$x0965-0393$$y2024
001026960 8564_ $$uhttps://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.pdf$$yOpenAccess
001026960 8564_ $$uhttps://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.gif?subformat=icon$$xicon$$yOpenAccess
001026960 8564_ $$uhttps://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026960 8564_ $$uhttps://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026960 8564_ $$uhttps://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026960 8767_ $$d2024-07-19$$eHybrid-OA$$jPublish and Read
001026960 909CO $$ooai:juser.fz-juelich.de:1026960$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001026960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198952$$aForschungszentrum Jülich$$b0$$kFZJ
001026960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b3$$kFZJ
001026960 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026960 9141_ $$y2024
001026960 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026960 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026960 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026960 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001026960 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001026960 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026960 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001026960 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026960 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001026960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMODEL SIMUL MATER SC : 2022$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001026960 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001026960 920__ $$lyes
001026960 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001026960 9801_ $$aFullTexts
001026960 980__ $$ajournal
001026960 980__ $$aVDB
001026960 980__ $$aUNRESTRICTED
001026960 980__ $$aI:(DE-Juel1)IAS-9-20201008
001026960 980__ $$aAPC