Hauptseite > Publikationsdatenbank > Accurate distances measures and machine learning of the texture-property relation for crystallographic textures represented by one-point statistics > print |
001 | 1026960 | ||
005 | 20250204113858.0 | ||
024 | 7 | _ | |a 10.1088/1361-651X/ad4c81 |2 doi |
024 | 7 | _ | |a 0965-0393 |2 ISSN |
024 | 7 | _ | |a 1361-651X |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03539 |2 datacite_doi |
024 | 7 | _ | |a WOS:001236131100001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03539 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Iraki, Tarek |0 P:(DE-Juel1)198952 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Accurate distances measures and machine learning of the texture-property relation for crystallographic textures represented by one-point statistics |
260 | _ | _ | |a Bristol |c 2024 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1717505996_12358 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The crystallographic texture of metallic materials is a key microstructural feature that is responsible for the anisotropic behavior, e.g. important in forming operations. In materials science, crystallographic texture is commonly described by the orientation distribution function, which is defined as the probability density function of the orientations of the monocrystal grains conforming a polycrystalline material. For representing the orientation distribution function, there are several approaches such as using generalized spherical harmonics, orientation histograms, and pole figure images. Measuring distances between crystallographic textures is essential for any task that requires assessing texture similarities, e.g. to guide forming processes. Therefore, we introduce novel distance measures based on (i) the Earth Movers Distance that takes into account local distance information encoded in histogram-based texture representations and (ii) a distance measure based on pole figure images. For this purpose, we evaluate and compare existing distance measures for selected use-cases. The present study gives insights into advantages and drawbacks of using certain texture representations and distance measures with emphasis on applications in materials design and optimal process control. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Morand, Lukas |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Link, Norbert |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 3 |
700 | 1 | _ | |a Helm, Dirk |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1088/1361-651X/ad4c81 |g Vol. 32, no. 5, p. 055016 - |0 PERI:(DE-600)2001737-6 |n 5 |p 055016 - |t Modelling and simulation in materials science and engineering |v 32 |y 2024 |x 0965-0393 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1026960 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)198952 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a TIB: IOP Publishing 2022 |2 APC |0 PC:(DE-HGF)0107 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-09 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MODEL SIMUL MATER SC : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|