001     1026960
005     20250204113858.0
024 7 _ |a 10.1088/1361-651X/ad4c81
|2 doi
024 7 _ |a 0965-0393
|2 ISSN
024 7 _ |a 1361-651X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03539
|2 datacite_doi
024 7 _ |a WOS:001236131100001
|2 WOS
037 _ _ |a FZJ-2024-03539
082 _ _ |a 530
100 1 _ |a Iraki, Tarek
|0 P:(DE-Juel1)198952
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Accurate distances measures and machine learning of the texture-property relation for crystallographic textures represented by one-point statistics
260 _ _ |a Bristol
|c 2024
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1717505996_12358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The crystallographic texture of metallic materials is a key microstructural feature that is responsible for the anisotropic behavior, e.g. important in forming operations. In materials science, crystallographic texture is commonly described by the orientation distribution function, which is defined as the probability density function of the orientations of the monocrystal grains conforming a polycrystalline material. For representing the orientation distribution function, there are several approaches such as using generalized spherical harmonics, orientation histograms, and pole figure images. Measuring distances between crystallographic textures is essential for any task that requires assessing texture similarities, e.g. to guide forming processes. Therefore, we introduce novel distance measures based on (i) the Earth Movers Distance that takes into account local distance information encoded in histogram-based texture representations and (ii) a distance measure based on pole figure images. For this purpose, we evaluate and compare existing distance measures for selected use-cases. The present study gives insights into advantages and drawbacks of using certain texture representations and distance measures with emphasis on applications in materials design and optimal process control.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Morand, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Link, Norbert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 3
700 1 _ |a Helm, Dirk
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1088/1361-651X/ad4c81
|g Vol. 32, no. 5, p. 055016 -
|0 PERI:(DE-600)2001737-6
|n 5
|p 055016 -
|t Modelling and simulation in materials science and engineering
|v 32
|y 2024
|x 0965-0393
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026960/files/Iraki_2024_Modelling_Simul._Mater._Sci._Eng._32_055016.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026960
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)198952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MODEL SIMUL MATER SC : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21