001027000 001__ 1027000
001027000 005__ 20250204113900.0
001027000 0247_ $$2doi$$a10.1016/j.jad.2024.05.125
001027000 0247_ $$2ISSN$$a0165-0327
001027000 0247_ $$2ISSN$$a1573-2517
001027000 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03568
001027000 0247_ $$2pmid$$a38806064
001027000 0247_ $$2WOS$$aWOS:001249875400001
001027000 037__ $$aFZJ-2024-03568
001027000 082__ $$a610
001027000 1001_ $$0P:(DE-Juel1)179423$$aLahnakoski, Juha M.$$b0$$eCorresponding author
001027000 245__ $$aA machine-learning approach for differentiating borderline personality disorder from community participants with brain-wide functional connectivity
001027000 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001027000 3367_ $$2DRIVER$$aarticle
001027000 3367_ $$2DataCite$$aOutput Types/Journal article
001027000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718115924_30832
001027000 3367_ $$2BibTeX$$aARTICLE
001027000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001027000 3367_ $$00$$2EndNote$$aJournal Article
001027000 520__ $$aBackground:Functional connectivity has garnered interest as a potential biomarker of psychiatric disorders including borderline personality disorder (BPD). However, small sample sizes and lack of within-study replications have led to divergent findings with no clear spatial foci.Aims:Evaluate discriminative performance and generalizability of functional connectivity markers for BPD.Method:Whole-brain fMRI resting state functional connectivity in matched subsamples of 116 BPD and 72 control individuals defined by three grouping strategies. We predicted BPD status using classifiers with repeated cross-validation based on multiscale functional connectivity within and between regions of interest (ROIs) covering the whole brain—global ROI-based network, seed-based ROI-connectivity, functional consistency, and voxel-to-voxel connectivity—and evaluated the generalizability of the classification in the left-out portion of non-matched data.Results:Full-brain connectivity allowed classification (∼70 %) of BPD patients vs. controls in matched inner cross-validation. The classification remained significant when applied to unmatched out-of-sample data (∼61–70 %). Highest seed-based accuracies were in a similar range to global accuracies (∼70–75 %), but spatially more specific. The most discriminative seed regions included midline, temporal and somatomotor regions. Univariate connectivity values were not predictive of BPD after multiple comparison corrections, but weak local effects coincided with the most discriminative seed-ROIs. Highest accuracies were achieved with a full clinical interview while self-report results remained at chance level.Limitations:The accuracies vary considerably between random sub-samples of the population, global signal and covariates limiting the practical applicability.Conclusions:Spatially distributed functional connectivity patterns are moderately predictive of BPD despite heterogeneity of the patient population.
001027000 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001027000 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001027000 7001_ $$0P:(DE-HGF)0$$aNolte, Tobias$$b1
001027000 7001_ $$0P:(DE-HGF)0$$aSolway, Alec$$b2
001027000 7001_ $$0P:(DE-HGF)0$$aVilares, Iris$$b3
001027000 7001_ $$0P:(DE-HGF)0$$aHula, Andreas$$b4
001027000 7001_ $$0P:(DE-HGF)0$$aFeigenbaum, Janet$$b5
001027000 7001_ $$0P:(DE-HGF)0$$aLohrenz, Terry$$b6
001027000 7001_ $$0P:(DE-HGF)0$$aKing-Casas, Brooks$$b7
001027000 7001_ $$0P:(DE-HGF)0$$aFonagy, Peter$$b8
001027000 7001_ $$0P:(DE-HGF)0$$aMontague, P. Read$$b9
001027000 7001_ $$0P:(DE-HGF)0$$aSchilbach, Leonhard$$b10
001027000 773__ $$0PERI:(DE-600)1500487-9$$a10.1016/j.jad.2024.05.125$$gp. S0165032724008681$$p345-353$$tJournal of affective disorders$$v360$$x0165-0327$$y2024
001027000 8564_ $$uhttps://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.pdf$$yOpenAccess
001027000 8564_ $$uhttps://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.gif?subformat=icon$$xicon$$yOpenAccess
001027000 8564_ $$uhttps://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001027000 8564_ $$uhttps://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001027000 8564_ $$uhttps://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001027000 909CO $$ooai:juser.fz-juelich.de:1027000$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001027000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179423$$aForschungszentrum Jülich$$b0$$kFZJ
001027000 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)179423$$a Max Planck Institute of Psychiatry, Munich$$b0
001027000 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)179423$$a Heinrich Heine University Düsseldorf$$b0
001027000 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001027000 9141_ $$y2024
001027000 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001027000 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-19
001027000 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001027000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001027000 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001027000 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
001027000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001027000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001027000 920__ $$lno
001027000 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001027000 980__ $$ajournal
001027000 980__ $$aVDB
001027000 980__ $$aUNRESTRICTED
001027000 980__ $$aI:(DE-Juel1)INM-7-20090406
001027000 9801_ $$aFullTexts