001     1027000
005     20250204113900.0
024 7 _ |a 10.1016/j.jad.2024.05.125
|2 doi
024 7 _ |a 0165-0327
|2 ISSN
024 7 _ |a 1573-2517
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03568
|2 datacite_doi
024 7 _ |a 38806064
|2 pmid
024 7 _ |a WOS:001249875400001
|2 WOS
037 _ _ |a FZJ-2024-03568
082 _ _ |a 610
100 1 _ |a Lahnakoski, Juha M.
|0 P:(DE-Juel1)179423
|b 0
|e Corresponding author
245 _ _ |a A machine-learning approach for differentiating borderline personality disorder from community participants with brain-wide functional connectivity
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718115924_30832
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background:Functional connectivity has garnered interest as a potential biomarker of psychiatric disorders including borderline personality disorder (BPD). However, small sample sizes and lack of within-study replications have led to divergent findings with no clear spatial foci.Aims:Evaluate discriminative performance and generalizability of functional connectivity markers for BPD.Method:Whole-brain fMRI resting state functional connectivity in matched subsamples of 116 BPD and 72 control individuals defined by three grouping strategies. We predicted BPD status using classifiers with repeated cross-validation based on multiscale functional connectivity within and between regions of interest (ROIs) covering the whole brain—global ROI-based network, seed-based ROI-connectivity, functional consistency, and voxel-to-voxel connectivity—and evaluated the generalizability of the classification in the left-out portion of non-matched data.Results:Full-brain connectivity allowed classification (∼70 %) of BPD patients vs. controls in matched inner cross-validation. The classification remained significant when applied to unmatched out-of-sample data (∼61–70 %). Highest seed-based accuracies were in a similar range to global accuracies (∼70–75 %), but spatially more specific. The most discriminative seed regions included midline, temporal and somatomotor regions. Univariate connectivity values were not predictive of BPD after multiple comparison corrections, but weak local effects coincided with the most discriminative seed-ROIs. Highest accuracies were achieved with a full clinical interview while self-report results remained at chance level.Limitations:The accuracies vary considerably between random sub-samples of the population, global signal and covariates limiting the practical applicability.Conclusions:Spatially distributed functional connectivity patterns are moderately predictive of BPD despite heterogeneity of the patient population.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Nolte, Tobias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Solway, Alec
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vilares, Iris
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hula, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Feigenbaum, Janet
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lohrenz, Terry
|0 P:(DE-HGF)0
|b 6
700 1 _ |a King-Casas, Brooks
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fonagy, Peter
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Montague, P. Read
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schilbach, Leonhard
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.jad.2024.05.125
|g p. S0165032724008681
|0 PERI:(DE-600)1500487-9
|p 345-353
|t Journal of affective disorders
|v 360
|y 2024
|x 0165-0327
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1027000/files/Lahnakoski_et_al_2024_Borderline_personality_connectivity.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1027000
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179423
910 1 _ |a Max Planck Institute of Psychiatry, Munich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)179423
910 1 _ |a Heinrich Heine University Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)179423
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21