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We present a detailed derivation of the elastic energy of a homogeneous, isotropic linear elastic medium
consisting of different coherent martensite variants or phases and its mapping to an Ising model, as required for
an efficient quantum annealing determination of the equilibrium microstructure. The approach is demonstrated
for a sample with a large number of grains with a tetragonal eigenstrain. Furthermore, we illustrate how the
elastic effects may lead to the formation of ion conducting channels in the doped solid electrolyte Li7La3Zr2O12

(LLZO). Apart from bulk elastic and chemical effect we demonstrate how to include interfacial effects into the
quantum annealing approach and emphasize the importance of high precision elastic calculations.
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I. INTRODUCTION

The properties of many materials are strongly influenced
by the microstructure, which can ideally be tailored to lead
to the desired behavior as needed for the intended ap-
plication. Here, mechanical effects can trigger solid state
transformations, which could be used to create the desired
microstructure. Such a processing technology needs to come
along with powerful simulation techniques, which are able
to quantitatively predict equilibrated microstructures in large
and application relevant systems, to ensure a long term stabil-
ity of the adjusted phase arrangement. Whereas phase-field
approaches [1–4] are strong and established approaches to
simulate the kinetics of microstructure evolution, the long-
term behavior involving thermochemical, interfacial but also
mechanical effects is hard to address due to large simulation
times.

Recently, we established a new simulation technique which
is based on quantum annealing (QA), and which allows to
directly determine the thermodynamic ground state for a
martensitic microstructure with elastic interactions in a very
efficient way [5,6]. QA itself is a specific case of adiabatic
quantum computing, which has become very powerful during
recent years [7–11]. Nowadays such machines with several
thousand qubits and couplers are available on the market.
To use this technique, it is necessary to express the problem
of interest as a discrete optimization problem, as described
through an Ising model or equivalently through a quadratic
unconstrained binary optimization problem [12–14]. Despite
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the fact that quantum annealers allow highly efficient global
energy minimizations, applications of this technology in the
field of materials science and related disciplines [5,15–25]
are still rare due to this specific problem structure. The main
part of actual research concentrates on performance test and
benchmarking of quantum annealing versus classical algo-
rithms [26–29]. Indeed, the solution of optimization problems
via quantum annealing plays recently a role in other research
fields [30–35].

The problem and solution approach proposed in Refs. [5,6]
is based on the concept that a grain structure of the ma-
terial of interest is known, and that for each grain by the
selection of a martensite variant (or more generally a phase)
is driven by the minimization of energy. Such transforma-
tions are important for example for shape memory alloys,
which undergo reversible, structural phase transitions between
martensitic and austenitic phases, depending on temperature
and the trained, previous shape [36,37]. If the grains are co-
herently connected, then interfaces between different phases
lead to internal stresses and therefore raise the elastic en-
ergy. The approach expresses the energy minimization as a
discrete optimization process by mapping it to a spin glass
problem [38–41]. Although this is a significant simplification
of the entire microstructure optimization process, the problem
size grows exponentially with the number of grains and is
therefore hard to solve with conventional computing methods.
We have demonstrated in Ref. [5] that QA leads to a remark-
able acceleration of the computations, therefore allowing for
large scale simulations.

The purpose of the the present paper is fourfold:
First, it describes the entire methodology in more detail

than in Ref. [5]. This includes in particular the derivation of
the coefficients of the underlying spin glass model through
a Fourier space representation of the elastic energy stored in
the microstructure (Sec. II). In this way, one obtains explicit
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expressions for the coefficients of the Ising model, as used
by the quantum annealer. This approach has the advantage
of delivering accurate expressions for the elastic interactions
between the grains. As we demonstrate explicitly in this paper,
this is a necessary condition for obtaining the correct equilib-
rium microstructures using QA (Sec. III D).

Second, we demonstrate the application to large systems
with up to several thousand grains, which is important for
generating representative volume elements of the entire mi-
crostructure and their response to external mechanical loads
(Sec. III A).

Third, we apply the general approach to the ceramic
solid electrolyte Li7La3Zr2O12 (LLZO), therefore going be-
yond the aforementioned shape memory alloys. LLZO has
a thermodynamically stable tetragonal phase with poor Li-
ion conductivity [42,43]. However, for battery applications
the highly conductive and at ambient temperatures unsta-
ble cubic phases [42,44] is desired. The cubic phase can
be stabilized via substitutions of different aliovalent ele-
ments like Al3+, Ta5+, and Ga3+ [43–45]. Several studies
investigated the resulting mechanical and structural prop-
erties of pure and substituted tetragonal and cubic phases
[46–48]. Here we investigate to which extent percolating,
highly conducting ion channels may form as a result from a
self-organization process driven by elastic coherency stresses
(Sec. III B).

Finally, we demonstrate how the approach can be extended
to incorporate also interfacial effects and discuss their influ-
ence on the microstructure selection (Sec. III C).

II. METHODS

A. Elastic energy in reciprocal space

In this section an expression for the elastic energy of the
system, based on the solution of the underlying elastic prob-
lem in reciprocal space, is presented. Although the use of
Fourier methods is beneficial and allows to obtain the quan-
tum annealer coefficients with sufficient accuracy, in principle
any other elastic solver can be used as well, as discussed
in Ref. [6]. For our specific application, we assume that the
eigenstrain is constant within each grain (and related to the
martensite variant), and that the grains are coherently con-
nected. This means on the level of continuum elasticity that at
the interfaces between adjacent grains not only the normal and
shear stresses are continuous (by force balance) but also the
displacements. For simplicity, we assume isotropic elasticity.
As external boundary cases we consider the two important
cases of either a vanishing mean stress in a periodic system or
a given mean strain 〈εαβ〉. Whereas the formalism works both
in two and three dimensions, we use for the applications below
specifically a two dimensional plane strain setup, i.e., the
displacement component vanishes, uz ≡ 0, and ux, uy depend
only on x and y. From the obtained expression of the elastic
energy we generate a formulation as Ising model, which can
then be implemented on the quantum annealer. As we assume
the elastic constants to be the same everywhere (homoge-
neous elasticity), the interactions between grains decompose

into pairwise terms [49], which is necessary for the annealer
formulation.

The starting point is the elastic energy for isotropic materi-
als

Eel =
∫

V

(
λ

2

(
εαα (r) − ε (0)

αα (r)
)2

+μ
(
εαβ (r) − ε

(0)
αβ (r)

)2
)

dr, (1)

with Lamé coefficient λ and shear modulus μ (we employ
Einstein’s sum convention). ε

(0)
αβ (r) is the position-dependent

eigenstrain, which is known for a given microstructure. Af-
ter solution of the elastic problem, the elastic energy of the
system reads in reciprocal space

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂
(0)
αδ (k)kαGδβkγ σ̂

(0)∗
βγ (k)

]

+ λV

2

(〈εαα〉 − ε̂ (0)
αα (k = 0)

)2

+μV
(〈εαβ〉 − ε̂

(0)
αβ (k = 0)

)2
. (2)

For a derivation of this energy expression and explanation
of the involved terms we refer to the Appendix. In particu-
lar, the hat symbol (ˆ) denotes Fourier transformation with
reciprocal lattice vector k, and σ

(0)
αβ = λδαβε (0)

γ γ + 2με
(0)
αβ is

the eigenstress. The isotropic elastic Green tensor is defined
through its inverse, G−1

βδ = λkβkδ + μkαkαδβδ + μkβkδ . The
expression (2) holds for given average strain boundary con-
ditions [case (ii)]. For a stress free system [case (i)], where
the average stress vanishes, the last two terms vanish, as by
mechanical equilibrium conditions one obtains in particular
for the homogeneous strain 〈εαβ〉 = ε̂

(0)
αβ (k = 0).

B. Ising formulation

We assume the entire system to be decomposed into N
grains. At this point, we do not make assumptions about the
grain structure, so they can be, e.g., regular cuboids or random
structures, e.g., taken from electron backscatter diffraction
(EBSD) images or a Voronoi tesselation. In agreement with
the preceding analysis, the grains are assumed to be coherent
from the point of view of elasticity. The grains are enumerated
by n and characterized by an indicator function

θn(r) =
{

1 inside grain n,

0 otherwise, (3)

which satisfies the condition
∑

i θi(r) = 1. The eigenstrain
therefore reads

ε
(0)
αβ (r) =

N∑
n=1

θn(r)
K∑

k=1

(
sn,kε

(0,n,k)
αβ + ε

(0,n,0)
αβ

)

=
∑
n,k

sn,kε
(0,n,k)
αβ (r) +

∑
n

ε
(0,n,0)
αβ (r), (4)

where sn,k = ±1 are the spin values to distinguish the different
variants. We consider here a generalized case to describe
more than two variants, therefore extending the previous sim-
plification in Ref. [5] with only two variants with opposite
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eigenstrain. Therefore, an additional summation over K spins
per grain is needed, to encode up to 2K different variants,
see also [6]. (We note that running roman indices like k
enumerate spins and variants, which have to be distinguished
from reciprocal lattice vectors k, which are displayed in bold,
with components kα . Greek letters are used for spatial com-
ponents.) In many situations it is beneficial to consider also
an offset ε

(0,n,0)
αβ , as will be illustrated below in Sec. III B. We

note that the eigenstrain contributions can differ from grain to
grain, to capture different phases or grain orientations. From
the spatially constant eigenstrain contributions within each
grain in the first line of Eq. (4), in the second line a shorter
notation is defined using position dependent eigenstrain con-
tributions, which have a nonvanishing value only inside one
grain.

Similarly, we write for the Fourier transformation of ε
(0)
αβ (r)

ε̂
(0)
αβ (k) =

∑
n,k

sn,k ε̂
(0,n,k)
αβ (k) +

∑
n

ε̂
(0,n,0)
αβ (k). (5)

Consequently, the eigenstress field σ
(0)
αβ (r) [see Eq. (A15)] has

in reciprocal space the form

σ̂
(0)
αβ (k) = λδαβ ε̂ (0)

γ γ (k) + 2με̂
(0)
αβ (k)

=
∑
n,k

sn,k σ̂
(0,n,k)
αβ (k) +

∑
n

σ̂
(0,n,0)
αβ (k). (6)

By insertion into the energy expression (2) we obtain the Ising
formulation, which is necessary for the quantum annealer. We
use here the fixed strain case (ii) with the knowledge that it
differs from the free stress case (i) only by the k = 0 terms.
Therefore, we need to bring the energy to the form

Eel = E0 +
∑
i< j

Ji jsis j +
∑

i

hisi, (7)

where i and j are a shorthand notation for the combined grain
and variant index, e.g., i = (n, k). With this we get the final
elastic energy expression

Eel = V
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(8)

where ε̄αβ is the given mean strain. This expression shows
explicitly that the elastic energy in a given microstructure
with homogeneous elasticity and coherent interfaces between
grains, variants or phases leads to an Ising representation,
and the values of the coefficients in Eq. (7) can be directly
determined.

C. Description of the underlying workflow

As explained above, we describe the material of interest to
be decomposed into “grains”, where each of them is entirely
in one of the “martensite” states, hence we can describe the
entire microstructure through a set of spin variables {si}. We
emphasize that the notation as grains does not necessarily
require them to be physical grains, but can also be considered
as numerical “discretization” unit and also different phases
instead of martensite variants can be considered. A simple
discretization in this sense is to use little equilateral cuboidal
elements, as illustrated for two dimensions in Fig. 1. How-
ever, also more complex discretizations are possible and will
be discussed in the following. In either way, the elastic energy
reduces to combinations of pairwaise interactions between
all grains, which follows from the Fourier representation (8)

above, which contains only terms up quadratic order in the
spin variables si; see also Ref. [49]. For the cuboidal dis-
cretization in the system with periodic boundary conditions,
the advantage is that for both the linear and quadratic Ising
coefficients in the representation (7) translation invariance can
be employed. This reduces the computational effort drasti-
cally, as only one “self energy” for an arbitrary grain has to
be computed, as well as the “interaction energy” of one grain
with all other grains. For all other grains, one obviously gets
the same values. The result of such a calculation is illustrated
as heat map in Fig. 2, where the color coding shows the
strength of the interaction, i.e., the magnitude of the Ising
coefficients Ji j for two grains enumerated by i and j. Here,
one of the grains is placed in the center of the system, and
the interaction energy with all grains is shown. Therefore,
the computational effort for calculating the Ising coefficients
scales as N , where N is the number of cuboidal grains. This
figure shows that besides the translational invariance, also
discrete symmetries may be employed, depending on the type
of transformation strain.

In contrast, an irregular discretization as in Fig. 3 requires
the computation of all interaction energies between all pairs
of grains, hence we have a scaling of the effort as N2. Such a
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FIG. 1. Two-dimensional discretization of the system using
cuboidal “grains.”

microstructure could, e.g., be imported from an EBSD
mapping of a material of interest. To mimic a realistic mi-
crostructure, also a Voronoi tesselation can be used. Here, we
use the open source software library voro++ for this purpose
[50,51]. We mention in passing that although we use isotropic
elasticity, still the eigenstrain can depend on grain orientation.
Therefore, we can assign a (random) orientation to each grain

FIG. 2. Each grain can be in the states si = ±1. Interaction ener-
gies of two grains of equal variant type (si = s j) in the case of a shear
eigenstrain, as described by Eq. (14), and vanishing average stress.
The interaction energy per length is given in units of λa3ε2

0 , and the
computations were done using a system size of Lx/a = Ly/a = 50
with a Poisson ratio of ν = 1/4.

in the stage of the Voronoi tesselation, which can then be used
for a tensor rotation of the eigenstrain.

For the computation of the Ising coefficients, the derived
formula (8) can be used directly. Alternatively, it can be easier
to use the strategy described in Ref. [6]. The idea is that one
uses explicit settings of the spins by assigning to them values
0 and 1. Then, it is sufficient to perform calculations with (i)
all spins being equal to zero, (ii) one single spin being equal
to ±1, whereas all other vanish, and (iii) for calculation of
the interaction energies Ji j additionally computations with two
nonvanishing spins si = s j = 1, whereas all other vanish, are
needed, see Refs. [5,6] for details.

Additionally, it makes sense to separate the terms with
k �= 0 from the one with k = 0, as the latter is related to
a given external strain. These latter terms can be calculated
analytically, which has the advantage that a change of the
external boundary conditions does not require a (numerically
expensive) recomputation of the Ising coefficients.

After calculation of the Ising coefficients Ji j and hi, the
problem is ready for implementation on a quantum annealer.
Due to the probabilistic nature of the quantum annealing pro-
cess also higher energy states are found, specially if close low
energy states are present. Therefore, a suitable number of rep-
etitions of the process is made and the solution with the lowest
detected energy is chosen. In the case that the Ising prob-
lems do not match the QPU’s architecture, so called chains,
i.e., subgraphs of coupled qubits, cover one problem variable
through the minor embedding [52,53]. In addition, for large
problem sizes hybrid quantum annealing takes additional
advantage of combining QPU computations with classical
algorithms, allowing for up to 11616 spin variables on the
D-Wave Advantage system [52,54,55]. Finally, the resulting
spin configuration obtained by the quantum annealing process
is visualized according to the generated Voronoi grains.

III. RESULTS

In this section we discuss several aspects, applications and
extensions of the presented method. First, in Sec. III A we
show that even systems with a rather high number of grains
can be simulated efficiently with quantum annealing. The
second example in Sec. III B investigates possible self organi-
zation processes in solid electrolytes for battery applications.
In Sec. III C we illustrate how apart from volumetric effects
also interfacial energy contributions can be included. Finally,
in Sec. III D we emphasize the importance of high precision
elasticity calculations and the influence of possible real space
interaction cutoffs.

A. Large-scale simulation of equilibrium microstructures

In contrast to microstructure evolution simulation ap-
proaches, the present approach aims at determining directly
(constrained) equilibrium patterns. Here, the energy can be
minimized by properly selecting the variants (or phases) for
each grain, depending on the external mechanical load. We
show that for quantum annealing simulations with several
thousand grains are easily feasible. We note that the total
time for determining the ground state configurations for sim-
ulations with N = 2500 grains, as depicted in Fig. 3, do not
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FIG. 3. Equilibrium variant distribution in a microstructure with uniform grain orientation. The microstructures consist of 2500 coherent
grains, and a tensile strain is applied in horizontal (x) direction. Red (green) grains correspond to variant si = +1 (si = −1), as described
through the eigenstrain tensor (9). The tensile strain is (a) 〈εxx〉/ε0 = 0, (b) 〈εxx〉/ε0 = 0.165, (c) 〈εxx〉/ε0 = 0.495, (d) 〈εxx〉/ε0 = 0.66, (e)
〈εxx〉/ε0 = 0.825, (f) 〈εxx〉/ε0 = 0.99, (g) 〈εxx〉/ε0 = 1.155, (h) 〈εxx〉/ε0 = 1.305, and (i) 〈εxx〉/ε0 = 1.32. The Poisson ratio is ν = 1/4.

require more than roughly one minute on a D-Wave quantum
annealer if a hybrid solver is used (the system is too big for a
pure quantum annealer solution); in fact, the pure QPA access
time is significantly lower. However, one has to keep in mind
that the Ising coefficients need to be precomputed, and this
becomes then the computationally expensive part, as ∼N2

interactions need to be calculated with high precision.
In the presented case, we distinguish between two marten-

site variants, hence one spin variable per grain is required. The
eigenstrain is given as

ε
(0)
αβ = si

⎛
⎝ε0 0 0

0 −ε0 0
0 0 ε0

⎞
⎠ (9)

in each grain, relative to the austenitic phase, without consid-
eration of a grain rotation. The strength of the transformation
is controlled by the parameter ε0, and additionally a varying
tensile strain is applied in lateral (x) direction. Figure 3 shows
the resulting variant distribution of equally orientated grains
for different strain strengths. For a vanishing tensile strain,
stripe patterns arise, which are discussed in more detail in
Ref. [5]. For increasing strain, the stripes are getting thinner,

until they are not connecting anymore. A criticial strain of
about 〈εxx〉/ε0 ≈ 1.32 [see panel (i)] leads to a uniform mi-
crostructure, i.e., only red grains with si = +1 remain.

The result shows that even with a straightforward gener-
alization to 3D structures it is possible to have sufficiently
large number of grains in each spatial direction, and there-
fore the approach is well suited to generate strain dependent
microstructures for representative volume elements.

B. Solid electrolyte Li7La3Zr2O12 (LLZO)

Li7La3Zr2O12 (LLZO) is a promising ceramic material
which can be used as electrolyte in all-solid-state batteries.
It has a high-ionic conductivity and can be used with lithium
as anode material, hence allowing for a high-energy density
and stability against failure. However, the room temperature
equilibrium phase of LLZO is a tetragonal phase, which has
a much lower Li ion conductivity than the metastable cubic
phase. The latter can be stabilized by alloying, e.g., with Ta
at increased costs. Therefore, it is desirable to perform such
dopings only to a minimum amount. From a thermodynamic
perspective, the doping level determines the phase fractions of

033047-5



SANDT, LE BOUAR, AND SPATSCHEK PHYSICAL REVIEW RESEARCH 6, 033047 (2024)

the cubic and tetragonal phases, but does not make predictions
for their spatial alignment, as the (bulk) chemistry depends
only on the overall volume fractions but not the arrangement.

In this section we aim to investigate to which extent elastic
effects, which arise due to the misfit between tetragonal and
cubic grains, can affect their equilibrium arrangement by min-
imization of the elastic energy. This may in the future enable
a “grain engineering” by enabling a self-organization process,
if “channels” of the cubic phase inside a tetragonal matrix
could lead to increased ionic conductivity through percola-
tion. To stay in the framework of the presented theoretical
approach, we make a number of simplifying assumptions to
keep the description simple and to rather sketch a possible
way for future optimized electrolyte fabrication. In detail,
the assumptions are: (i) We assume all grains to be equally
oriented. (ii) The grains are coherently connected and we use
the same (isotropic) elastic constants for both phases. (iii) We
consider for simplicity apart from the cubic phase (spin −1)
only one tetragonal variant (spin +1). (iv) The description is
two-dimensional with a plane strain setup.

Points (i) and (ii) are probably the most serious restrictions
of the current description, and therefore we expect the predic-
tions to be rather qualitative and setting an upper bound to the
possible influence of elastic effects. The assumptions (iii) and
(iv) are only technical simplifications, and a generalization to
a full three-dimensional description with more variants is in
the spirit of the general approach described above and mainly
increases the computational effort.

Concerning the description of the mechanical properties
of LLZO, we refer to the previous work [47,48,56]. The
lattice parameters for tetragonal LLZO, which is stable at
ambient temperature, are given as atet = 13.1846 Å and ctet =
12.6390 Å. In the desired cubic case the lattice parameter is
given as acub = 13.03286 Å. We employ the previous defini-
tion of the eigenstrain [Eq. (4)] with two variants, K = 1, and
N grains. Then, the resulting eigenstrain reads

ε
(0)
αβ (r) =

N∑
n

θn(r)
(
s(n)

1 ε
(0,n,1)
αβ + ε

(0,n,0)
αβ

)
, (10)

with eigenstrain tensor components ε
(0,n,1)
αβ and constant

eigenstrain offset ε
(0,n,0)
αβ . We use the cubic phase (s = −1)

as reference state, hence ε
(0)
αβ = 0 in such a grain, whereas in

a tetragonal grain we have

ε
(0)
αβ =

⎛
⎜⎝

atet−acub
acub

0 0
0 ctet−acub

acub
0

0 0 atet−acub
acub

⎞
⎟⎠

=
⎛
⎝0.011643 0 0

0 −0.030221 0
0 0 0.011643

⎞
⎠. (11)

These relations allow to uniquely determine ε
(0,n,1)
αβ and

ε
(0,n,0)
αβ . The elastic properties are—in isotropic

approximation—described to good accuracy with a Poisson
ratio ν = 1/4 as before.

Besides the mechanical component, which is responsible
for the spatial arrangement of the phases, also a chemical

component is important, as it fixes the volume fraction of
the phases. Such a perspective is based on the picture that
the chemical energy is higher than the elastic energy. How-
ever, in general also chemomechanical couplings can play a
role if both energy contributions are of a comparable order
of magnitude. In this case, it is also possible that strong
mechanical misfits affect the phase fractions, as a reduc-
tion of the elastic energy can be stronger than a deviation
from the equilibrium partitioning from a purely chemical
perspective. To qualitatively study such transitions, we add
a description of the chemical contribution to the free energy
and treat the coefficients in this energy term as adjustable
parameters.

To lowest order, a deviation of the chemical free energy
from a situation with equilibrium phase fractions is quadratic
in the volume fraction deviation. Hence, this energy contribu-
tion can be written as

�E = V γ

(
N∑

i=1

fisi − f

)2

= 2V γ

N∑
i< j

fi f jsis j − 2V γ f
N∑
i

fisi + const. (12)

Here, f is a parameter quantifying the expected equilibrium
volume fraction of the two phases, which is controlled by
the alloying, as described above. It ranges between −1 for
a purely cubic and +1 for a tetragonal system. Therefore,
in particular f = 0 corresponds to equal volume fractions
of the two phases. The parameter fi is the volume fraction
of grain i, hence

∑N
i fi = 1 holds. Finally, γ controls the

strength of the chemical energy contribution. It relates the
curvature of the composition dependent chemical free energy
curves to the elastic contribution, and can therefore be used
to tune between a chemically and a mechanically dominated
system. As the chemical energy expression (12) is quadratic
in the spin variable si, it can directly be implemented on the
quantum annealer, together with the elastic contribution. The
quantum annealing calculations are then performed via hybrid
computations, which allow to reliably find the ground state
even for larger systems.

Figure 4 shows the resulting equilibrium variant distribu-
tion. In all panels the same Voronoi tesselated microstructure
with 100 grains is used. Furthermore, all grains have the
same orientation, hence the same eigenstrain (11) is used
for all of them. As mechanical boundary conditions we use
vanishing average strain, 〈εαβ〉 = 0. In horizontal direction the
weighting parameter γ and in vertical direction phase fraction
parameter f is varied. Here, green (red) grains correspond to
the cubic (tetragonal) phase. The patterns in Figs. 4(a)– 4(d)
consist only of the cubic grains due the choice f = −1 in
the chemical energy. We note that in this state the system is
stress free due to the chosen mechanical boundary condition
〈εαβ〉 = 0. All pictures in the right column [Figs. 4(d), 4(h),
4(l), and 4(p)] correspond to γ = 0, which means that the
chemical energy contribution is absent. As then the energy
consists only of the elastic contribution, the system becomes
completely cubic in this case due to the chosen reference
of vanishing eigenstrain in the cubic phase. In contrast, the

033047-6



MICROSTRUCTURE EQUILIBRATION WITH … PHYSICAL REVIEW RESEARCH 6, 033047 (2024)

FIG. 4. Equilibrium phase distribution of tetragonal and cubic phases in LLZO for grains with uniform orientation. The microstructures
consist of 100 grains and the parameters γ and f are varied. Red grains correspond to si = +1, i.e., the tetragonal phase, green to si = −1,
which is the cubic phase.

chemical energy dominates for the cases in the left column
[Figs. 4(a), 4(e), 4(i), and 4(m)], and then the volume frac-
tions are close to the expected value f from the chemical
perspective. Nevertheless, the elastic contribution is still suf-
ficient to favor an ordering as inclined stripes similar to the
above situation in Fig. 3, with an orientation as expected from
the analysis in Ref. [5]. Also, a small cubic island remains
even in the case f = 1 in Figs. 4(m). In the bottom row, the
chemical contribution favors purely tetragonal systems ( f =
1), whereas the elastic energy favors the cubic state due the
the mechanical boundary conditions. In this extreme case the
volume fractions are then strongly controlled by the weighting
parameter γ /μ. For intermediate values, where two-phase
structures are found, the strip patterns are are more rugged
in comparison to the patterns in Fig. 3, which is mainly due
to the smaller number of grains. For all other cases, as, e.g.,
for the row f = 0, where from a chemical perspective equal
volume fractions of the phases are expected, the overall energy
minimization including elastic contributions lead to deviations
from this expectation, hence highlighting the aforementioned
strong chemomechanical coupling.

As a consequence we observe indeed a tendency for the
formation of ion conducting channels through the presence of
elastic effects for suitable mechanical boundary conditions.
However, it has to be pronounced that here all grains are
assumed to have the same orientation, and therefore also the
tetragonal distortion leads to an expansion in both x and z
direction. As long as the orientation remains in this plane by a
grain rotation, the eigenstrain tensor (11) remains invariant,
hence favoring such a self-organization process toward an
increased ionic conductivity of the solid electrolyte.

C. Interfacial energy

So far, we have considered with the elastic and chemical
contributions only bulk energies. As a consequence, there is
no selection of a length scale. In other words, a rescaling of
the pattern (including a change of the grain size) will lead to
identical patterns, and only the total energy changes according
to its proportionality to the system volume.

The inclusion of interfacial contributions therefore leads to
new physical effects, as—depending on the length scale—the
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FIG. 5. Equilibrated microstructures for zero average strain and
shear transformations with vanishing and negative interfacial energy
in a system of 50 × 50 cuboidal grains. Left: σ/με2

0 a = 0, right:
σ/με2

0 a = −1. The length is measured in multiples of the lattice unit
a, the Poisson ratio is ν = 1/4.

bulk and interface energies can compete. In fact, with the
interfacial energy density (per area) σ , the ratio σ/μ sets a
characteristic length scale. For a positive value of σ we expect
a coarsening tendency of the microstructure, and hence in
equilibrium the amount of interfaces shall be minimized in
particular if the interfacial energy dominates.

To formulate an interfacial energy (per unit length in 2D)
in the spirit of an Ising model for the quantum annealer, we
use a nearest-neighbor interaction, which penalizes interfaces
between different variants, using

Einterface = 1

2

∑
i, j(NN)

ai j σ̃i j (1 − sis j ), (13)

where ai j is the interface length between grain i and j and σ̃i j

is the interfacial energy for this pairs of grains. The formu-
lation (13) is for general anisotropic interface energies, and
for demonstrational purposes we focus here on the isotropic
case with σ̃i j ≡ σ for all interfaces. The summation in this
formula is limited to nearest-neighbor (NN) pairs, but also
generalizations to longer ranged interactions are conceivable
to mimic additional interactions.

As a simple illustration we use first the case of a shear
transformation with eigenstrain

ε
(0)
αβ = si

⎛
⎝ 0 ε0 0

ε0 0 0
0 0 0

⎞
⎠, (14)

which was conceptually discussed from point of view of elas-
tic effects in Ref. [5]. If we use a discretization by equally
sized cubes (hence, all ai j = a) without interfacial effects,
σ = 0, then the equilibrium pattern for fixed and vanishing
average strain boundary conditions, 〈εαβ〉 = 0, are horizontal
or vertical stripes with equal volume fractions of the two vari-
ants, hence the microstructure is effectively one-dimensional.
In this case, the entire pattern is stress free, as in each lamella
εαβ = ε

(0)
αβ . Consequently, an arbitrary arrangement of stripes

with equal amounts of the red and green phases minimizes the
elastic energy to zero; see left panel of Fig. 5. Consequently,
the selection among all the possible stripe patterns becomes
entirely through the interfacial energy for σ �= 0. Thus, for
σ > 0 the system minimizes the total energy by having a
stripe pattern with as few interfaces as possible. With the

FIG. 6. Top row: Equilibrated microstructures for zero average
strain and tetragonal transformations with different values of posi-
tive interfacial energy in a system of 50 × 50 cuboidal grains. Left:
σ/με2

0 a = 1, right: σ/με2
0 a = 9. Bottom row: The same for negative

interfacial energy: Left: σ/με2
0 a = −0.06, right: σ/με2

0 a = −0.07.
The length is measured in multiples of the lattice unit a, the Poisson
ratio is ν = 1/4.

condition 〈εαβ〉 = 0 we therefore obtain two equally sized red
and green stripes, provided that the interfacial energy is not
too high that even a strained single phase pattern is favorable.
In turn, for a negative interfacial energy σ < 0 the optimal
microstructure consists of a regular array of lamellae with
minimum width a; see right panel in Fig. 5.

For a tetragonal eigenstrain, see Eq. (9), patterns with
regular inclined stripes for 〈εαβ〉 = 0 similar to Figs. 3 and
4 appear without interfacial energy. For a positive interfa-
cial energy σ > 0, an increasing value of σ first leads to a
reduction of the number of stripes as well as a rotation of
the stripes to comply with the periodic boundary conditions
(see top row of Fig. 6). A higher value of the interfacial
energy destroys this morphology and leads to patterns with
unequal amounts of the variants, as the interfacial energy
overweights the elastic effects, though the latter alone would
favor configurations where the mean eigenstrain vanishes due
to the boundary condition. In a narrow intermediate param-
eter range, the appearing pattern contains a nucleus of one
variant inside a matrix of the other one (see top right panel
of Fig. 6). The elastic energy stabilizes the nucleus for the
same argument as just above, whereas the interfacial energy
balances this contribution and favors the disappearance of the
nucleus. For even higher values of σ the system becomes
single phased due to the dominance of the interfacial energy.
For negative interfacial energy, patterns with more interfaces
become favorable (see bottom row of Fig. 6). Initially, this
leads to an increase of the stripe density and change of the
orientation angle with decreasing interfacial energy, which
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then start to become unstable up to the point where the lamel-
lar microstructure is entirely destroyed. This transition occurs
within a very narrow range of interfacial energies.

D. Discussion on the elastic energy calculation

The key element of the quantum-annealer-based deter-
mination of the elastic ground state microstructure is the
formulation via pairwise interactions in the Ising formulation.
An example for the interaction coefficients Ji j is shown in
Fig. 2. This heatmap shows that the interactions with the
closest neighbors is highest and decays with the distance be-
tween the grains. Depending on the dimension of the system,
the elastic interactions decay asymptotically either as 1/r2

in 2 dimensions or 1/r3 in 3D. There are similarities to the
computations of long ranged Coulomb interactions, e.g., for
molecular dynamics simulations, which require the use of
Ewald summation techniques to properly capture the long
range tails of the interactions in periodic systems. Therefore,
also here the use of a real space cutoff for the elastic grain-
grain interactions is critical, although the interactions seem to
decay quickly.

To emphasize this effect, we consider again the shear trans-
formation case (14), which leads to stripe patterns; see Fig. 5.
As mentioned before, this example can be solved analytically
easily, as having a vanishing stress in each stripe by εαβ = ε

(0)
αβ

leads to a completely stress free case, which is compatible
with both the boundary conditions 〈σαβ〉 = 0 and 〈εαβ〉 = 0,
provided that the volume fractions of the two variants is equal.
However, from the picture of pairwise interactions in the Ising
representation this solution is not obvious. As all the Ising
coefficients are different from zero, it is an almost miraculous
cancellation of all N (N − 1)/2 mutual interactions, such that
the total elastic energy is exactly zero (apart from a constant
offset, which is typically not considered for the annealer for-
mulation). If now the range of the interactions is artificially cut
off, then it cannot be expected that the elastic energy agrees
with the analytical calculation.

To illustrate this effect, we set up a regular stripe mi-
crostructure manually in a system discretized by 50 × 50
cuboidal grains with a given lamella thickness λ. Additionally,
we impose an artificial cutoff to the range of the interactions
by setting Ji j = 0 beyond a given separation of the consid-
ered grains. Figure 7 shows the resulting elastic energy, as
computed from the truncated Ising summation for different
stripe thicknesses λ. In all cases we see that the expected
energy E = 0 is only reached without a cutoff (in the periodic
system, this is achieved if the range of the interaction is taken
at least half the system length, which is 25 in the example).
With the cutoff, the energy is obtained incorrectly, and then
also the quantum annealer is obviously not able to find the
physically correct ground state configuration. Qualitatively,
the energy is close to the expected value, if the cutoff range
is significantly larger than the stripe thickness λ, but as in
general the equilibrium microstructure can only be obtained
based on exact Ising coefficients, we can therefore conclude
that the use of any cutoff for the elastic interaction energy
calculation is not appropriate.

Apart from the issue of a real space cutoff, also possi-
ble numerical rounding errors have to be considered. As the
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FIG. 7. Total elastic energy as expressed through the Ising sum-
mation for a regular lamellar structure with strip width λ as function
of the real space interaction cutoff. The correct elastic energy Etot =
0 is reached only without cutoff, i.e., larger than half of the system
size, which is 25 here. For the case with noise, an uncorrelated
random variable with uniform distribution, vanishing mean value and
maximum magnitude of 2% of the strongest grain-grain interaction in
[100] interactions is added to all interaction parameters Ji j up to the
cutoff distance, leading to an inappropriate total energy even without
cutoff.

elastic energy is represented through a summation over ∼N2

terms, even small errors can lead in total to improper results.
For the shear transformation example, the grain-grain inter-
action at a distance of 20 lattice units in [100] direction has
decayed to about 2% of the maximum interaction strength at
next-to-nearest-neighbor interactions (see Fig. 2). To illustrate
the potential influence of numerical inaccuracies, a random
noise of this strength is added artificially to all considered
pair interaction coefficients, leading to modified total ener-
gies, which do not converge to the analytical result without
cutoff anymore; see Fig. 7. Therefore, the comparison to an
analytically known solution like the stripe patterns can help to
identify possible rounding errors.

In many cases, the ground state configuration is unique,
but for example for the shear transformation with the irregular
“barcode” patterns as in Fig. 5, the ground state is strongly
degenerate. Therefore, the Ising coefficients need to computed
with very high accuracy in order not to introduce spurious
biases. We indeed obtain for high resolution Fourier trans-
formation computed interaction coefficients always different
patterns by the quantum annealer, which is an indication for
proper representation of the elastic energy through the Ising
summation. In essence, a precise calculation of the interaction
energy is therefore essential, and rough estimated, e.g., based
on the proper long distance asymptotics, not sufficient.

IV. CONCLUSION AND OUTLOOK

The present paper’s central result is the extended descrip-
tion and investigation of the underlying elastic calculations
of the microstructure optimization via quantum annealing.
We describe the underlying calculations of long-ranged elas-
tic interactions in reciprocal space and show the resulting
direct Ising formulation for the quantum annealer. Large
scale simulations of equilibrium microstructures with 2500
grains and varying tensile strain result in the expected stripe
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patterns, which are getting thinner for increasing strain. Here,
the quantum annealing part requires just roughly one minute
of computing time and presents no drastically increase with
increasing system sizes. This shows that also a generaliza-
tion to 3D structures with huge system sizes and therefore
the generation of microstructures with representative volume
elements is possible.

The application of the quantum annealing microstructure
equilibration to the solid electrolyte LLZO includes a
chemical energy component, which competes with the
elastic energy and influences the resulting microstructures. In
essence, the elastic effects favor a formation of ion conducting
channels through a self-organization process for suitable
mechanical boundary conditions. We note that these findings
are based on a number of simplifying assumptions, but future
investigations may extend the model’s complexity toward an
optimization of solid electrolytes. Therefore, this application
is a promising step toward quantum-computing-based
material design.

Further extensions include interfacial contributions to in-
vestigate the competition between bulk and interface energies
and their influence on the microstructure formation.

The truncation of the elastic interaction range through a
real space cutoff is tempting, however, we show that this is not
useful due to an artificial scale selection, which results in im-
proper microstructure predictions. Therefore, all interactions
between the grains have to be taken into account with high
accuracy. Fortunately, this is possible on the quantum annealer
without great losses in computing time also for large system
sizes.
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APPENDIX: DERIVATION
OF THE ELASTIC ENERGY

In this Appendix we determine the elastic equilibrium state
for a given eigenstrain distribution and express the elastic
energy for this equilibrated state in reciprocal space.

Generally, the Fourier transformation of a (real) function
f (r) is denoted as

f̂ = 1

V

∫
V

f (r) exp(ikr) dr, (A1)

inside a periodic cuboidal system with volume V = Lx × Ly ×
Lz. Then, the back transformation reads

f (r) =
∑

k

f̂ (k) exp(−ikr), (A2)

using the reciprocal lattice vectors

k = 2π

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
, ni ∈ Z. (A3)

The orthogonality between the base functions is expressed
through Parseval’s theorem, which holds for arbitrary func-
tions f1(r), f2(r) and their Fourier transforms f̂1(k), f̂2(k),

1

V

∫
V

f1(r) f2(r) dr =
∑

k

f̂1(k) f̂ ∗
2 (k), (A4)

where the star denotes complex conjugation. For numerical
implementations, Fast Fourier libraries like FFTW can be
used [58].

The strain can be split into a homogeneous (macroscopic
shape deformation) and heterogeneous part [59]

εαβ (r) = ε̄αβ + δεαβ (r). (A5)

The homogeneous strain ε̄αβ is then defined such that the
mean value of the fluctuation part vanishes,

〈δεαβ (r)〉 = 1

V

∫
V

δεαβ (r) dV = 0. (A6)

Similarly, we split the elastic energy into a contribution E1

which does not contain the fluctuations δεαβ and the remain-
ing part E2,

E1 =
∫

V

(
λ

2

(
ε̄αα − ε (0)

αα (r)
)2 + μ

(
ε̄αβ − ε

(0)
αβ (r)

)2
)

dr (A7)

and

E2 =
∫

V

(
λ

2

(
δε2

αα (r) − 2ε (0)
αα (r)δεββ (r)

)

+μ
(
δε2

αβ (r) − 2ε
(0)
αβ (r)δεαβ (r)

))
dr, (A8)

hence Eel = E1 + E2.
Elastic equilibrium can be expressed through the min-

imization of the energy. Since E1 and E2 are functionals
of independent degrees of freedom, the minimzation of Eel

requires the separate minimization of E1 and E2. Here, we dis-
tinguish between two cases, namely (i) vanishing mean stress,
〈σαβ〉 = 0, and (ii) given average mean strain, 〈εαβ〉 = ε̄αβ .

In case (i) the elastic energy is minimized with respect to
the (total) displacement components as degrees of freedom.
This includes the minimization of E1 with respect to the ho-
mogeneous strain contributions ε̄αβ ,

∂E1

∂ε̄αβ

=
∫

V

[
λδαβ

(
ε̄γ γ − ε (0)

γ γ (r)
) + 2μ

(
ε̄αβ − ε

(0)
αβ (r)

)]
dr

= 0. (A9)

By definition the mean stress is given in the isotropic case as

σ̄αβ = 〈σαβ (r)〉
= λδαβ

(
ε̄γ γ − 〈

ε (0)
γ γ (r)

〉) + 2μ
(
ε̄αβ − 〈ε (0)

αβ (r)〉),
(A10)

and therefore the minimization condition (A9) can be read as

〈σαβ (r)〉 = 0, (A11)
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which is in agreement with the desired boundary condition of
vanishing mean stress, hence

ε̄αβ = 〈
ε

(0)
αβ (r)

〉 = ε̂
(0)
αβ (k = 0). (A12)

For the minimization of E2 we represent the strain variation
δεαβ through the displacement field uα ,

δεαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
, (A13)

as the minimization has to be done with respect to uα as
independent degrees of freedom. Furthermore, we introduce
the stress fluctuation

δσαβ (r) = λδαβδεγ γ (r) + 2μδεαβ (r) (A14)

and the eigenstress

σ
(0)
αβ = λδαβε (0)

γ γ + 2με
(0)
αβ (A15)

as abbreviations. Then, the energy E2 is minimized with re-
spect to uα ,

δE2

δuα

= − ∂

∂xβ

(
δσαβ (r) − σ

(0)
αβ (r)

) = 0, (A16)

which is the expected stress balance. In reciprocal space this
relation reads

G−1
αβ ûβ = −ikβ σ̂

(0)
βα , (A17)

with the inverse isotropic Green tensor

G−1
βδ = λkβkδ + μkαkαδβδ + μkβkδ. (A18)

By inversion we therefore get the solution (for k �= 0)

ûα = −iGαγ kβ σ̂
(0)
βγ . (A19)

For a two-dimensional plane strain setup we get explicitly for
this tensor

G2D = 1

μ(λ + 2μ)k4

×
(

(λ + μ)k2
y + μk2 −(λ + μ)kxky

−(λ + μ)kxky (λ + μ)k2
x + μk2

)
, (A20)

with k = (kx, ky) and k = |k|. Inserting the (general) solution
into the energy expressions gives in reciprocal space by using

Parseval’s theorem (A4)

E1 = λV

2

∑
k �=0

ε̂ (0)
αα (k)ε̂ (0)∗

ββ (k) + μV
∑
k �=0

ε̂
(0)
αβ (k)ε̂ (0)∗

αβ (k)

(A21)

and

E2 = λV

2

∑
k �=0

δε̂αα (k)δε̂∗
ββ (k) − λV

∑
k �=0

ε̂ (0)∗
αα (k)δε̂ββ (k)

+μV
∑
k �=0

δε̂αβ (k)δε̂∗
αβ (k)

−2μV
∑
k �=0

ε̂
(0)∗
αβ (k)δε̂αβ (k), (A22)

using

δε̂αβ = 1
2 (ikα ûβ + ikβ ûα ). (A23)

The total elastic energy expression can then be further simpli-
fied to

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂ (0)
αγ (k)kαGγ βkδσ̂

(0)∗
βδ (k)

]
.

(A24)

For case (ii), i.e., given mean strain conditions, ε̄αβ is not
a degree of freedom, and therefore the variation of E1 is not
needed. Then we get for E1

E1 = λV

2

∑
k �=0

ε̂ (0)
αα (k)ε̂ (0)∗

ββ (k) + μV
∑
k �=0

ε̂
(0)
αβ (k)ε̂ (0)∗

αβ (k)

+ λV

2

(
ε̄αα − ε̂ (0)

αα (k = 0)
)2

+μV
(
ε̄αβ − ε̂

(0)
αβ (k = 0)

)2
, (A25)

whereas E2 remains unaffected. Finally, we therefore get for
the total elastic energy

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂ (0)
αγ (k)kαGγ βkδσ̂

(0)∗
βδ (k)

]

+ λV

2

(
ε̄αα − ε̂ (0)

αα (k = 0)
)2

+μV
(
ε̄αβ − ε̂

(0)
αβ (k = 0)

)2
, (A26)

which differs from case (i) only by the homogeneous contri-
bution. Obviously, the earlier case follows from the average
strain relaxation with ε̂

(0)
αβ (k = 0) = ε̄αβ , in agreement with

the conditions (A11) and (A12).
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