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In recent years many vector charmonium(like) states were reported by different electron-positron
collider experiments above 4.2 GeV. However, so far, there not only exists sizable tension in the parameters
of those states, but there is also no consensus on the number of the vector states in this energy range. To
some extend, this might be caused by the fact that the experimental data were typically analyzed in single
channel analyses employing overlapping Breit-Wigner functions, in particular ignoring the effect of
opening thresholds. In this study, we focus on the mass range between 4.2 GeVand 4.35 GeV, conducting a
comprehensive analysis of eight different final states in eþe− annihilation. Our findings demonstrate that,
within this mass range, a single vector charmoniumlike state, exhibiting properties consistent with a D1D̄

molecular structure and characterized by a pole location
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sYð4230Þpole

q
¼ ð4227� 4 − i

2
ð50þ8

−2 ÞÞ MeV, can

effectively describe all the collected data. This is made possible by allowing for an interference with the
well-established vector charmonium ψð4160Þ along with the inclusion of the D1D̄ threshold effect.
Moreover, in contrast to experimental analyses, our study reveals that the highly asymmetric total cross
sections for eþe− → J=ψππ and eþe− → J=ψKK̄ around 4230MeV stem from the same physics, rooted in
the approximate SU(3) flavor symmetry of QCD.

DOI: 10.1103/PhysRevD.109.116002

I. INTRODUCTION

Since the discovery of the first exotic state, i.e., χc1ð3872Þ
also known as Xð3872Þ, in the c̄c-sector in 2003, a large
number of states was discovered in the charmonium and

bottomonium mass range that show properties incompatible
with expectations from quark models that describe mesons
as quark-antiquark states. For recent reviews see, e.g.,
Refs. [1–6]. The amount of available data is especially rich
in the JPC ¼ 1−− channel, since here states containing c̄c
can be generated directly in eþe−-collisions and can there-
fore straightforwardly be studied at experiments like
BABAR, Belle, and BESIII. In this work, we focus on
vector states in the mass range from 4.2 GeV to 4.35 GeV.
This energy range hosts most prominently the ψð4230Þ also
known as Yð4230Þ and potentially one additional state
located at 4.32 GeV. The latter was introduced in the
analyses of the BESIII Collaboration for the reaction
eþe− → J=ψπþπ− to account for the highly asymmetric
line shape seen in the experiments reported in Refs. [7,8].
In particular, the most recent analysis [8] revealed for the
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Breit-Wigner mass and width of the Yð4230Þ in this
channel,

MYð4230Þ ¼ 4221.4� 1.5� 2.0 MeV;

ΓYð4230Þ ¼ 41.8� 2.9� 2.7 MeV; ð1Þ

and for the Yð4320Þ

MYð4320Þ ¼ 4298� 12� 26 MeV;

ΓYð4320Þ ¼ 127� 17� 10 MeV; ð2Þ

where the first and second uncertainty is statistical and
systematic, respectively. The Yð4320Þ is also needed for
analyzing the J=ψπ0π0 channel [9], and the parameters
above are consistent with the data in this channel. On the
other hand, the Yð4230Þ is seen in the eight additional
channels shown in Fig. 1, admittedly with largely incon-
sistent parameters, while the state dubbed Yð4320Þ shows
up in none of them, at least within the mass range consistent
with Eq. (2), not even in eþe− → J=ψKK̄ which is
connected to eþe− → J=ψππ by the approximate SU(3)
flavor symmetry of QCD. In experiments by BABAR and
Belle a state named Yð4360Þ, with a mass of about
4345 MeV, was discovered in the ψð2SÞπþπ− [10,11] final
state. However, the recent BESIII measurement of the same
channel revealed that the Yð4360Þ emerges due to a subtle
interference of the Yð4230Þ and a state at 4390 MeV with a
width of 140 MeV [12], which is thus in a mass range close
to the ψð4415Þ, however, twice as wide. A signal at
4390MeVwith the consistent parameters was also observed
by BESIII in the hcππ [13] and J=Ψη [14] final states. Since
this state is outside the mass range in focus here, we do not
discuss it any further.

In the mass range from 4.2 GeV to 4.35 GeV the findings
just described raise the following questions:
(1) Why does the observed width of the Yð4230Þ

deduced from the J=ψππ channel, differ so signifi-
cantly from that deduced from the D�D̄π channel,
where the measured width is twice as large [15]?

(2) What can we learn from the cross section differences
for Yð4230Þ in its various decay channels? Note that
the cross section in the DD̄�π channel is about one
order-of-magnitude larger than those of hidden
charm decays.

(3) Why is the Yð4230Þ observed in final states with
both c̄c spin 1 (i.e., J=ψππ and ψ 0ππ channels) and
c̄c spin 0 (i.e., hcππ channel) at a similar rate,
despite being produced via a photon, which leads to
c̄c in spin 1 only? Can we understand this seemingly
large violation of heavy quark spin symmetry?

(4) Why is the Yð4320Þ seen only in a single channel?
(5) Can the apparent asymmetry of the J=ψπþπ− line

shape be generated by the opening of theD1ð2420ÞD̄
channel just below the nominal mass of the Yð4320Þ?
Here the D1ð2420Þ is the narrow axial vector with a
width of about 30 MeV, which decays to the πD�

channel predominantly in D-wave; the nearby
D1ð2430Þ has a width of about 300 MeVand decays
to the πD� channel predominantly in S-wave. Thus,
the broadD1 is not capable of producing structures as
narrow as those discussed here, although its mixing
with the narrow D1, emerging from spin symmetry
violation, is relevant for the detailed description of
the data.

In this work we address the mentioned issues starting
from the assumption that the Yð4230Þ is a D1ð2420ÞD̄
hadronic molecule, proposed originally in Ref. [20], and

FIG. 1. Mass and width of the two Y-states discussed in the introduction as extracted from the experimental analyses of the individual
channels shown by the labels. All data below a mass value below 4240 MeV is interpreted a Yð4230Þ and the one data point above refers
to the Yð4320Þ. The experimental values are taken from [8,9,12–19]. The red dot denotes the pole location for the Yð4230Þ as extracted
in this work.

LEON VON DETTEN et al. PHYS. REV. D 109, 116002 (2024)

116002-2



refined in Ref. [21] by taking into account the D1D̄ cut
properly and in particular the triangle singularity mecha-
nism, which is crucial for the production of the Zcð3900Þ,
accounts for the line shape of the J=ψππ and in this way
leads to a pole position around 4.23 GeV. Before we discuss
in detail the observable consequences of this assumption
we present the other structure assumptions put forward for
this state in the literature, namely studies that do not need
the pole of the Yð4230Þ at all as well as the three types
that do call for a state in this mass range, namely the
hybrid, the hadrocharmonium and the compact tetraquark
interpretation—details are given in the following para-
graphs. This allows us to demonstrate that the implications
of a molecular structure for the Yð4230Þ are very specific
and significant.
In Refs. [22,23] no pole for the Yð4230Þ needs to be

introduced. In the former reference the structure near
ffiffiffi
s

p ¼
4230 MeV is generated from the ψð4160Þ coupling to the
DsD̄s channel. While this provides a reasonable description
of the J=ψππ final state, it is unlikely that the same scenario
also allows a description of all the other final states,
especially the DD̄�π channel. The same comment applies
to Ref. [23], where the Yð4230Þ is generated from an
interference of the neighboring charmonium states. We
therefore do not consider these mechanisms any further.
In the hadrocharmonium picture an exotic hidden charm

state appears as a compact c̄c core surrounded by some
typically excited light quark cloud [24].1 While this explains
naturally that the Yð4230Þ decays into J=ψππ and not
Dð�ÞD̄ð�Þ as would be expected for a c̄c quark-model state, it
appears at odds with the fact that the Yð4230Þ is observed
also in the hcππ final state, since heavy quark symmetry
calls for a conservation of heavy quark spin. To overcome
this problem it was proposed in Ref. [26] that the Yð4230Þ
and the next higher state are in fact emerging from a mixing
of two states, one with a spin-0 c̄c core and one with a
spin-1 core. Thus, this scenario calls for a second nearby
vector state—a currently good candidate being the above
mentioned Yð4320Þ. Moreover, this mixing scenario implies
the existence of four spin-symmetry partners [27]. For
example, there should be two exotic ηc states, one in
between the two vector states, one significantly lighter than
the Yð4230Þ.
Very early after its discovery, the Yð4230Þ was proposed

to be a hybrid state based either on phenomenological
calculations [28–30] or heavy quark effective field theory
[31]. In the hybrid picture, both quarks and gluons con-
tribute as valence degrees of freedom. A study of the decays
employing heavy quark effective field theory disfavors a
pure hybrid interpretation of the Yð4230Þ [32]. In any case,
also the hybrid picture calls for a mixing of two nearby
vector states with different spin of the c̄c component of the

wave functions and thus for the existence of both Yð4230Þ
and Yð4320Þ to accommodate the decays into final states
with both spin-0 and spin-1 for the outgoing charmonium.
In addition, for a hybrid vector the decays into J=ψππ and
J=ψKK̄ are connected by SU(3) flavor symmetry. The rate
in the latter channel deduced in this way is however larger
than what one finds experimentally.
In the compact tetraquark picture the states are typically

made of heavy-light diquarks and antidiquarks. This
approach calls for four nonstrange vector states with
masses in the range 4220 MeV and 4660 MeV [33,34],
since the diquarks can have either spin-1 or spin-0
allowing for the following spin couplings with positive
C parity, ½0; 0�0, ½1; 0�1 þ ½0; 1�1, ½1; 1�0, ½1; 1�2, with the
spins of diquark and antidiquark in the brackets and their
total spin as subindex outside—note that a state that
contains two spin-1 substructures coupled to total spin-1
has negative C parity. To get the negative parity needed for
a vector state, an angular momentum of 1 needs to be
introduced between the diquark and antidiquark that in
addition flips the C parity to the needed −1. For example,
the currently preferred fit of Ref. [33] includes both
Yð4220Þ as well as Yð4320Þ. An alternative approach to
compact tetraquarks, similar in spirit, but different in the
realization, is outlined in Ref. [35]. Thus, we see that three
of the nonmolecular scenarios prefer the presence of both
Yð4230Þ and Yð4320Þ while the remaining are challenged
by the decay properties of the Yð4230Þ.
In this study, we investigate the feasibility of a combined

analysis involving eight different final states excited in
eþe− annihilation, namelyD0D�−π, J=ψπþπ−, J=ψKþK−,
hcπþπ−, μþμ−, χc0ð1PÞω, J=ψη, and Xð3872Þγ, in the
mass range from 4.2 GeV to 4.35 GeV, under the
assumption that the Yð4230Þ is a D1D̄ molecule. The main
message of this work is that the data available in this mass
range is consistent with the presence of a single exotic state
predominantly of molecular nature, since such a state
necessarily has a large coupling to the D1D̄ channel.
The molecular scenario for the Yð4230Þ was already
advocated in Refs. [36,37] based on an analysis of older
data in the J=ψππ and hcππ channels. It is crucial to
emphasize that, while certain properties of the data emerge
naturally in the current analysis, there are cases where fine-
tuned parameters are necessary. It turns out that in order to
obtain a coherent picture, it is unavoidable to include the
interference with an additional vector state whose proper-
ties we fix to those of the well-known charmonium state
ψð4160Þ. This is illustrated in Fig. 2, where we show the fit
results with and without the ψð4160Þ for three selected
channels; at first glance, the narrow structure in the J=ψππ
channel appears incompatible with the much broader
structure observed inDD̄�π, as well as some other channels
discussed below. However, as shown in the figure this
discrepancy can be overcome by a simultaneous presence
of both ψð4160Þ and Yð4230Þ. Based on an analysis of the

1The hadrocharmonium picture is contrasted to the molecular
one for the Yð4230Þ in Ref. [25].
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channels DD̄, DD̄�, D�D̄�, and DD̄π, Ref. [38] puts
forward the hypothesis that these two vector states could
actually be the same state. However, the data shown in
Fig. 2 indicate that this conjecture is not compatible with
the data studied in this work. Especially the μþμ− channel
shown in the bottom panel of Fig. 2 clearly shows two
individual peak structures, which can only be understood
by the presence of two resonance poles. Moreover, if the
higher peak in the μþμ− channel were driven by the D1D̄
cusp, it would appear at the D1D̄ threshold and not about
60 MeV below.
We regard this work as some exploratory study—

accordingly some disclaimers need to be given, which will
be overcome in subsequent publications:

(i) We treat the effect of the interference of the ψð4160Þ
with the Yð4230Þ perturbatively. While this simpli-
fies the fitting, it violates unitarity since only terms
linear in the vector propagators are included in the
evaluation of the hadronic cross sections.

(ii) Also, to accelerate the fitting, we approximate the
imaginary parts in the denominators of the reso-
nance propagators for ψð4160Þ, Yð4230Þ, and
Zcð3900Þ. Specifically, we keep dynamically the
most significant imaginary parts that exhibit strong
energy dependence within the considered mass
range. Meanwhile, contributions from more distant
channels that show minimal changes are replaced by
constants. Accordingly, the complete width of the
ψð4160Þ is treated as a constant, and for the other
two states only the D1D̄ and the D�D̄ channels,
respectively, are kept dynamically.

(iii) This is a phenomenological study. In particular, we
cannot estimate uncertainties from a truncation error
in some systematic expansion. This is appropriate,
however, since we only aim at demonstrating what is
possible with a single exotic particle in the mass
range of interest. Accordingly, uncertainties of e.g.,
the pole parameters of the Yð4230Þ were only
roughly estimated at this stage.

(iv) We focus on the effect of the D1D̄ intermediate state
in the decays of the Yð4230Þ, basically ignoring that
heavy quark spin symmetry also calls for the coupled
channels D1D̄� and the D2D̄�—this is the main
limiting factor when considering the energy range.

(v) The channels with two pions or two kaons in the final
states necessitate the proper inclusion of ππ=KK̄
final-state interactions, as discussed in previous
works [40–44]. In this study we simplify the treat-
ment of these effects. While our approximation
shows qualitatively very reasonable results, the data
for eþe− → ψð2SÞππ, exhibit a very unusual energy
dependence in the subsystem invariant mass distri-
butions at

ffiffiffi
s

p ¼ 4230 and 4260 MeV, which seem to
require a more refined treatment. Consequently, data
from eþe− → ψð2SÞππ are not included in the
current fits.

(vi) The data currently available do not show apparent
peak structures of Yð4230Þ in Dð�ÞD̄ð�Þ channels,
which must appear in odd partial waves to reach
JPC ¼ 1−−. This suggests that the couplings of
Yð4230Þ to the two-body open charm channels
are much smaller than those of the vector charmo-
nium states. In Ref. [45] it was demonstrated that
the dips seen in the data of eþe− → D�D̄� andD�

sD̄�
s

are consistent with an interference from the D1D̄
molecular nature of the Yð4230Þ.

Note that with respect to exploiting the implications of the
heavy quark spin symmetry there are more advanced studies
than this one already published [46,47]. However, both
those works focus solely on the pole locations that emerge
from solving the scattering equations for the members of the
spin multiplet fD1; D2g scattering off those of fD̄; D̄�g. No
attempt is made to investigate the resulting line shapes in the
various decay channels. Contrary to those works, we here

FIG. 2. Fit result for D0D�−πþ, J=ψπþπ−, and μþμ− channels,
including the ψð4160Þ (solid red line) and omitting it (dashed
blue line). The data for the D0D�−πþ channel are from Ref. [39],
those for the J=ψπþπ− channel from Ref. [8] and for μþμ− from
Ref. [18]. The vertical dashed lines indicate the positions of the
nominal mass of the ψð4160Þ and D1D̄ threshold, respectively.
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study the energy dependence of the cross sections in the
various decay channels. This allows us to demonstrate that
the inclusion of the ψð4160Þ together with the strong
coupling of the Yð4230Þ to the D1D̄ channel that is a
consequence of its assumedmolecular nature, is sufficient to
describe all data sets studied here without the need for an
additional exotic state in the mass range of interest. This
conclusion is in line with the preliminary results of this
study announced in Ref. [48].
While preparing this manuscript we got aware of

Ref. [49], where, besides various other ingredients, the
ψð4160Þ, the Yð4230Þ and the D1D̄-channel are included.
The central finding of that work relevant for us is that in

total three poles are found in the energy range studied here.
While one of them might well represent the ψð4160Þ, only
with somewhat shifted parameters, and another one the
Yð4230Þ, there is still a resonance needed close to
4320 MeV, albeit a very broad one (with a width more
than 300 MeV) absent in our analysis. From the information
provided in Ref. [49] it is not clear what dynamics drives the
appearance of such a pole.
A more detailed comparison with that work will only be

possible, once more details are published.
An alternative analysis to ours that includes both

ψð4160Þ as well as Yð4230Þ in the energy range of interest
here but does not call for a state located at 4320 MeV is
Ref. [50]. In this work the asymmetric shape observed in the
total cross sections of ππJ=ψ and D�D̄π can be reproduced
as an interference effect between ψð4160Þ and the higher
energy state ψð4415Þ—the latter state is beyond the energy
range considered in our analysis—combined with a non-
resonant background. Then the inclusion of Yð4230Þ is
needed for fine-tuning the agreement with data near
4.2 GeV. Another striking difference between that work
and ours is their omission of any threshold effects. As we
argue below, the significance of the D1D̄ threshold in the Y
line shapes is a direct hint towards its molecular nature—
accordingly Ref. [50] argues that their analysis is consistent
with a c̄c structure of the Yð4230Þ. Thus, studying observ-
able differences between the results of that work and ours is
important to pin down the nature of the Yð4230Þ. We come
back to this when discussing the results. It should also
be mentioned that the relatively large cross section seen in
eþe− → hcππ—where the final state contains a c̄c pair
in spin zero, contrary to the production of a c̄c pair with spin
one—suggests a considerable amount of heavy quark spin
symmetry (HQSS) violation. This phenomenon, highly
unnatural for a c̄c structure, is explained naturally by
prominent D1D̄ loops, since the two-meson intermediate
state decorrelates the heavy quark spins. Therefore, the
similarity in size between the J=ψππ and the hcππ cross
sections suggests a molecular structure of the Yð4230Þ.
The paper is structured as follows. We start with some

general considerations about the diagrams to be included in
the molecular approach. Then, in Sec. III, we describe in

some detail the formalism employed. Section IV contains
the fitting results as well as their discussion. We close with
a summary and outlook in Sec. V. Additional technical
details of the calculations are delegated to Appendixes.

II. GENERAL CONSIDERATIONS

In the molecular scenario, the coupling of some physical
Y states to the nearby continuum channel, h1h2, that forms
the molecule is maximal [51,52], see also [4] for a review. In
fact, this large coupling is what encodes the molecular
nature of a given state. Accordingly, the transition of Y to
the channel h1h2 dominates over the others and the
diagrams containing this coupling appear always at leading
order. In effective field theories (EFTs), the relative impor-
tance of the diagrams is controlled by power-counting rules,
as presented for similar systems, e.g., in Refs. [53,54].
However, our case involves several additional complexities
such as the presence of the unstable particle D1 in the
transition, exploration of a relatively wide energy range, and
the analysis of three-body final states. To illustrate the
second point, we note that for the energies near the Yð4230Þ
peak, triangle diagram (c) of Fig. 3 is potentially important,
as long as we look at D�D̄ invariant masses close to the
mass of the Zcð3900Þ. Indeed, not only the D�D̄ inter-
mediate state is in this case nearly on shell, but also the
nearby triangle singularity significantly enhances the con-
tribution of this diagram [55]. However, this diagram is
suppressed over a large fraction of the Dalitz plot apart from
this range. Therefore, in what follows, we employ a more
pragmatic strategy to consider the most natural and phe-
nomenologically motivated production mechanisms and
investigate their relative importance in different energy
regimes. Due to this, we postpone an estimation of the
theoretical uncertainties to a later publication.

A. e + e− → D0D�−π +

The most direct access to a molecular state is provided by
its imprint on the near threshold cross section of the channel
that forms the molecular state, since as outlined above the
coupling of the molecule to its constituents is large. The
same reason is also the origin of the unnaturally large
nucleon-nucleon scattering lengths [4,51,56]. This phe-
nomenon arises from the existence of nearby molecular
states in both the spin-1 channel (with the deuteron as a true
bound state) and the spin-0 channel (with a closely located
virtual state). The D1ð2420Þ is unstable with a width
of about 30 MeV. It decays predominantly into D�π in
D-wave, thus the final state with closest connection to a
possible molecular nature of the Yð4230Þ is the D�D̄π
channel. The corresponding diagrams are shown in Fig. 3.
Both diagram (a) and diagram (c) scale directly with the

large YD1D coupling. Moreover, they are both enhanced
by the near on shell D1 propagator—after all we are near
the pole of a narrow state. In our study we also treat the
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Zcð3900Þ as a hadronic molecule, in line with Ref. [21].
Accordingly the coupling of the Zc to the D�D̄ channel is
also large. Moreover, the triangle diagram, which is part of
diagram (c), is enhanced by a very close by triangle
singularity [55]. Thus, we expect diagrams (a) and (c) to
contribute significantly to the observables.
The pole of the Yð4230Þ is located about 60 MeV below

the nominal D1D̄ threshold, which is about twice the width
of the D1ð2420Þ. This width still allows for a resonance
signal even at

ffiffiffi
s

p ¼ 4230 MeV [57,58], however, with a
significant kinematic suppression—the large coupling of
the Yð4230Þ to the D1D̄ channel with the D1 → D�π decay
in D-wave develops its effect mostly above the D1D̄
threshold. However, although violating HQSS, the narrow
D1ð2420Þ is expected to mix with the much broader
D1ð2430Þ. In this way the narrow D1ð2420Þ also gets an
S-wave decay [59], which does not so strongly suffer from
the above mentioned kinematic suppression allowing it to
contribute significantly to the Yð4230Þ peak in the πD�D̄
channel. In particular, the decays of the D1ð2420Þ to D�π
both in S- and D-waves are therefore included in diagrams
(a) and (c). In this paper, whenever referring to D1 without
mass number, we talk about the narrow D1ð2420Þ, to
simplify notation.
In addition, because of the large width of the D1ð2430Þ,

its residual effect acts effectively like a very short ranged
contribution. We thus do not calculate loop contributions
involving this broad state explicitly but parametrize it by a
point coupling of the Yð4230Þ to πD�D̄with S-waves in all
subsystems. Since the D�D̄ in S-wave also undergoes
final-state interactions, the just mentioned point coupling
cannot occur in isolated form, but needs to get dressed by
the Zcð3900Þ propagator that parametrizes the D�D̄ S-
wave interaction. This results in an expression that is
represented by diagram 3(b)—details for the expressions
employed are given in Sec. III as well as in the
Appendix A. This construction is automatically consistent
with the Watson theorem [60].

Finally, in the experimental data for the πD�D̄ channel the
width of the structure around 4230 MeV is notably broader
than that observed, e.g., in the J=ψππ channel—see Fig. 2.
Because of this, the parameters extracted for the Yð4230Þ in
the two channels by the BESIII Collaboration are incon-
sistent with each other—cf. Fig. 1. A possible mechanism
that allows for a combined fit of the various channels is that
the ψð4160Þ also has some small coupling to theD�D̄π. The
experimental signal observed could then be interpreted as
the result of an interference of the signatures from the two
resonances. Also for the ψð4160Þ we assume that the
coupling is in S-wave with respect to all subsystems and,
as before, also here the direct transition ψð4160Þ → D�D̄π
gets dressed by the D�D̄ final-state interaction parametrized
by the Zcð3900Þ propagator. The corresponding diagram is
shown in Fig. 3(d). We are aware that, if the ψð4160Þ were
(predominantly) a D-wave charmonium, there should also
be angular momenta in the final state as a consequence of
HQSS. However, the data do not call for an additional
coupling structure and we thus omit it from our study.

B. e+ e− → J=ψðππ=K̄KÞ
Next we turn to the discovery channel of the Yð4230Þ,

eþe− → J=ψππ, where the highly asymmetric line shape
lead to the claim for the existence of an additional state
called Yð4320Þ [7,8]. Again, driven by the assumed
molecular nature of the Yð4230Þ, contributions that run
through the D1ð2420ÞD̄ intermediate state are sizable and
need to be considered. Then, to reach the J=ψππ final state,
possible topologies are either box diagrams [see Figs. 4(a)
and 4(b) as well as Fig. 5 for a complete set of box
diagrams] or a triangle followed by a Zcð3900Þ propagator
[Figs. 4(c) and 4(d)]. As before we need to allow for
additional processes and also here include a diagram for the
contact transition of the Yð4230Þ to the J=ψππ final state
[Fig. 4(e)], as before dressed by the final-state interaction
that leads to the occurrence of the Zcð3900Þ—see Sec. III B
for a detailed discussion. Furthermore also in this channel

FIG. 3. Diagram contributing to eþe− → D̄D�π. (a) tree level, (b) Yð4230Þ contact term, (c) Triangle, (d) ψð4160Þ contact term, where
for the last three the final-state interactions in the doubly heavy subsystem are included.
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FIG. 4. Diagram contributing to eþe− → J=ψππ. The thin lines in the box and triangle denote D� or D mesons. (a),(b) boxes,
(c) triangle, (d) triangle counterterm, (e) Yð4230Þ contact term, (f) ψð4160Þ contact term, where for the last two the J=ψπ final-state
interactions are included.

FIG. 5. Decomposition for the box topology of eþe− → J=ψπþπ−.
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we allow for a contribution of the ψð4160Þ, shown in
Fig. 4(f).
To come to the full amplitudes, the ππ final-state

interaction needs to be taken into account as well. Since
the initial photon generates a c̄c-pair, which is isoscalar,
and the final c̄c pair is isoscalar as well, the pion pair must
be isoscalar with even angular momentum (the latter also
follows from parity conservation). In the vicinity of the
Yð4230Þ pole, the ππ system is probed in the energy range
from its threshold up to about 1.1 GeV. Since the scalar-
isoscalar ππ interaction has a strong coupling to the K̄K
system, the final-state interaction is included by employing
a formalism that explicitly treats the coupled channels.
Since the full treatment of the system is technically very
demanding [44] (see Refs. [40–42] for related studies)
because of the intricate singularity structure of the pertinent
integrals, in this exploratory study we employ an approxi-
mate treatment that still allows for a sensible description
also of the ππ spectra—details are given in the next section
and in Appendix B.
The coupled channel treatment of the ππ=K̄K final-state

interaction provides us at the same time access to J=ψK̄K
final state. To make the latter calculation complete, we also
need to take into account strangeness in the source, as
shown in Fig. 6. This does not introduce any additional
parameters, since we demand that the vertices are consistent
with the SUð3Þ-flavor symmetry. Naturally, the strangeness
sources are also included in the calculation of the J=ψππ
final state.

C. e + e− → hcππ

The diagrams contributing here are in principle analogous
to those for the J=ψππ channel, shown in Fig. 4. However,
in contrast to that channel, we exclude diagrams containing a
Zcð3900Þ. This is based on the observation that Zcð3900Þ
does not show a significant contribution to the hcπ invariant
mass distribution. Additionally, we point out that the
Zcð4020Þ is not included in this work, since this would
require a complete treatment of the fD1D̄ð�Þ; D2D̄ð�Þg
coupled channels, and of the fDD̄�; D�D̄�g subsystems,
which is postponed to future work. Moreover, the contact
terms that drive the contributions shown in diagrams (e)
and (f) of Fig. 4 in the J=ψππ channel are omitted here as
they violate spin symmetry. This symmetry violation is
overcome by the loop diagrams as a result of the spin
symmetry violation that enters through the mass differences
of D and D� as well as D1 and D2—the former one being
included explicitly in the calculation, the latter one by
choosing an energy range where the D2 contribution should
be negligible. For a detailed discussion on how the spin
symmetry gets restored in the heavy quark limit even in the
presence of hadronic molecules, see Ref. [61]. In summary,
for the hcππ channel we only include the box topologies
shown in Fig. 7, expecting some deviations from experiment
as a result of the omission of the Zcð4020Þ. On the other
hand, it is not expected that the Zcð4020Þ will generate
significant structures in the total cross section of hcππ,
which is the focus of the current work, since in this case, the
narrow peak from Zcð4020Þ in the πhc subsystem is
smeared. The same effect is demonstrated explicitly in this
work, where the narrow structures of the Zcð3900Þ seen in
the J=ψπ subsystem do not visibly modify the energy
dependence of the cross section for J=ψππ.

D. e+ e − → Xð3872Þγ
If Yð4230Þ is a D1D̄ hadronic molecule and both

Zcð3900Þ and Xð3872Þ are D�D̄ hadronic molecules with

FIG. 6. Strange source for eþe− → J=ψKþK−.

FIG. 7. Diagrams contributing to eþe− → hcπþπ−.
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IðJPCÞ ¼ 1ð1þ−Þ and IðJPCÞ ¼ 0ð1þþÞ, respectively, the
production mechanism of the latter pair in Yð4230Þ decays
must be analogous [62]. Only that the particle radiated off
in the course of the Yð4230Þ decay must have positive C
parity for the transition to the Zc and negative C parity for
the transition to the Xð3872Þ. Thus, all that needs to be
done to get from the diagram that generates the Zc in
Yð4230Þ → πZc to the one that generates the Xð3872Þ, is to
replace the pion in the final state by a photon. The resulting
diagrams are shown in Fig. 8.

E. e+ e − → μ+ μ−
For each reaction discussed so far the electromagnetic

production mechanism and the strong decay were entangled
in a special way. What makes the eþe− → μþμ− especially
interesting is, that here we may isolate production from
decay, since the total cross section is by far dominated by the
real valued tree-level diagram (first diagram in Fig. 9) and
the hadronic cross sections only contribute significantly
through their interference with the mentioned dominating
one. Moreover, the decays of Yð4230Þ and ψð4160Þ into the
same hadronic channels induce some mixing of these in the
γ� → γ� transition amplitudes. The diagrams contributing to
the process are shown in Fig. 9. The mentioned mixing of
the two vector resonances is depicted here as the hatched
blob. The imaginary part of this mixing amplitude is given
by the respective interference terms that contribute also to

the various exclusive hadronic channels discussed above.
It is dominated by the transitions Yð4230Þ → DD̄�π →
ψð4160Þ, since the DD̄�π cross section is by far the largest
hadronic cross section. The details of the calculations can be
found in Sec. III C 8. Therefore, the simultaneous study of
the hadronic channels and the eþe− → μþμ− channel
provides a sanity check for the size of the induced mixing
of the vector states, which turn out to be significant.

F. Further channels

As shown in Fig. 1, in addition to the channels discussed
in detail above, the Yð4230Þ is seen also in the final states
ωχc0, ηJ=ψ and ψð2SÞππ. In this work we do not study this
last decay channel as the ψð2SÞπ invariant mass distribu-
tions vary so dramatically when the total energy is changed
mildly form 4.226 MeV to 4.258 MeV [63] that there must
be some highly nontrivial interplay of different mecha-
nisms at work that to our understanding are not yet
understood microscopically (while in Ref. [43] a descrip-
tion of the invariant mass distributions is provided, no
attempt is made to understand the energy dependence of the
total cross section).
For the first two channels, both triangle diagrams as well

as direct transitions contribute as shown in Figs. 10 and 11,
respectively. Below we discuss the results for these channels
as well.

FIG. 8. Diagram contributing to Xð3872Þγ.

FIG. 9. Diagrams contributing to eþe− → μþμ−. The hatched circle in the rightmost diagram indicates the mixing of the two vector
states driven by their common decays to the channels DD�π; J=ψππ; χc0ω; J=ψη and Xð3872Þγ considered in this analysis—for details
see text.

FIG. 10. Diagrams contributing to χc0ω.
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III. FORMALISM

In this section the formalism underlying the calculations
is presented in some detail with additional material pro-
vided in the Appendix A. Those readers most interested in
the results and their physical interpretation may want to
jump to Sec. IV immediately.

A. The Y(4230) as a D1D̄ state

We can write the D1D wave function as a negative
C-eigenstate

jD1D̄ðC ¼ −1Þi ¼ 1ffiffiffi
2

p ðjD1D̄i − jDD̄1iÞ:

As the Yð4230Þ is predominantly produced by cc̄ it must
be an isosinglet. Following the convention,

���� 12 ;þ 1

2

�
¼ D̄0 ¼ c̄u;

���� 12 ;þ 1

2

�
¼ −Dþ ¼ −cd̄;���� 12 ;− 1

2

�
¼ D− ¼ c̄d;

���� 12 ;− 1

2

�
¼ D0 ¼ cū; ð3Þ

the isosinglet wave function is given by jI ¼ 0i ¼
1=

ffiffiffi
2

p ðj↑↓i − j↓↑iÞ, resulting in

jD1D̄ðC ¼ −1; I ¼ 0Þi

¼ 1

2
ðjDþ

1 D
−i þ jD0

1D̄
0i þ jDþD−

1 i þ jD0D̄0
1iÞ: ð4Þ

The effective Lagrangian for the coupling of D1D̄ to
Yð4230Þ and D1D̄ self-interactions reads [37],

LY ¼ gY0ffiffiffi
2

p ðD̄†YiDi†
1 − D̄i†

1 Y
iD†Þ

þ g1½ðDi
1D̄Þ†ðDi

1D̄Þ þ ðDD̄i
1Þ†ðDD̄i

1Þ�; ð5Þ

where the couplings gY0 and g1 include the heavy quark
mass normalization of the fields. Typically a proper field
redefinition allows one to absorb the effect of nonpertur-
bative hadron-hadron scattering into a pole term. This is not
possible only if there is more than one pole on the physical

sheet in the mass range of interest [64]. Since this is not the
case here we can safely set the parameter g1 to zero.

2 Thus,
we get for the D1D̄ scattering potential,

VðEÞ ¼ −
g2Y0
2

G0ðEÞ; ð6Þ

where the bare Y propagator reads,

G0ðEÞ ¼
1

2ωYðE −m0Þ
; ð7Þ

with ωY for the on shell energy of the Yð4230Þ from the
field normalization and E ¼ ffiffiffi

s
p

. Here we dropped the spin
indices although G0 and various other propagators below
refer to the propagation of a spin one particle. The reason is
that in our nonrelativistic treatment the spin structure
simply refers to a δij—the spin simply runs through
unchanged. The relation of the bare propagator G0ðEÞ to
the full propagator GYðEÞ is given by the Dyson equation,

GY ¼ G0 þG0gY0ð2ωYΣD1DÞgY0GY: ð8Þ

From this one finds for the D1D̄ scattering amplitude,

MD1D̄→D1D̄ ¼ −
g2Y0
2

GYðEÞ; ð9Þ

with

GYðEÞ ¼
1

2ωY
ðE −m0 − g2Y0ΣD1DðEÞ þ iΓin=2Þ−1: ð10Þ

Note that the last term in the denominator was added to
account for the contribution to the width of the Yð4230Þ
from the various inelastic channels. The self-energy Σ for a
resonance R can be derived from the standard, scalar one-
loop diagram, which reads in dimensional regularization
for the intermediate two-body state a, up to terms irrelevant
in what follows:

FIG. 11. Diagrams contributing to J=ψη.

2We checked that the inclusion of this parameter does not
allow us to improve the fit, however, leads to large correlations
between gY0 and g1.
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2ωRΣ̃aðsÞ ¼
1

ð4πÞ2
�
m2

a2 −m2
a1 þ s

2s
log

�
m2

a1

m2
a2

�

þ λ1=2ðs;m2
a2;m

2
a1Þ

2s

× log

�
m2

a2 þm2
a1 − sþ λ1=2ðs;m2

a2;m
2
a1Þ

m2
a2 þm2

a2 − s− λ1=2ðs;m2
a2;m

2
a1Þ
��

:

ð11Þ

Here s ¼ E2. The masses in the expression refer to the
masses of the two particles propagating in channel a. To
come from this to the expression for the self-energies
employed in the propagators, we use

ΣaðsÞ ¼ Σ̃aðsÞ − ReðΣ̃aðm2
0ÞÞ: ð12Þ

With this subtraction, the real part of the inverse Y
propagator vanishes at E ¼ m0 and it reduces significantly
the correlations between couplings and bare masses [65].
Using the D1D̄ scattering amplitude and the Yð4230Þ

propagator GY, one is in the position to derive the pointlike
production operator MY via the Yð4230Þ to D1D̄ (see
Fig. 12 for the graphical illustration),

MY ¼ ðc − αG0gY0Þð1þ 2ωYΣD1DGYg2Y0Þ; ð13Þ

where c is the direct coupling of the photon to D1D̄ in the
quantum numbers JPC ¼ 1−−, which vanishes in the HQSS
limit, and α is the source term coupling of the photon to the
bare Y state. Equation (13) gives the impression as if it had
a pole at the bare mass m0, however, from Eq. (8) one
gets that,

ð1þ 2ωYΣðE2ÞGYðEÞg2Y0Þ ¼ G0ðEÞ−1GYðEÞ; ð14Þ

which allows us to rewrite Eq. (13) as

MY ¼ ðaþ EbÞGYðEÞgY0: ð15Þ

Here, in the purely one channel D1D̄ problem, unitarity
requires the parameters to be real. However, allowing
for additional complex phases at the photon-resonance

couplings enables us to effectively include other effects,
such as interference between ψð4040Þ and ψð4160Þ, as
will be discussed below.

B. Production in the presence of coupled-channel
final-state interactions

Through hadronic final-state interactions, unitarity links
contact terms to resonance propagators—a special exam-
ple of this was already demonstrated above; Eq. (13)
contains both a contact term to the final state as well as the
resonance contributions collecting the interactions in that
final state. As demonstrated there, employing unitarity
makes the tree-level production term vanish and the final
amplitude, Eq. (15), is proportional to the dressed reso-
nance propagator.
Analogously one cannot discuss other tree-level oper-

ators or contact terms involved in the decay transitions
without the inclusion of the nonperturbative final-state
interactions in the relevant subsystem parametrized via
the pertinent resonance propagators. In analogy to the Y
propagator provided in Eq. (10) we find for the propagator
of the Zcð3900Þ from solving the related Dyson equation,

GZ ¼ 1

2ωZ

1

E −m0 −
P

i giΣigi
; ð16Þ

where the sum in the denominator runs over all relevant
channels, which for the Zcð3900Þ are D�D̄ and J=ψπ [66]
(denoted as channels 1 and 2 respectively) and E is the
energy in these subsystems. Furthermore, gi stands for the
couplings of the Zcð3900Þ with the channel i, and Σi refers
to the self energy in the corresponding channel. As before
the trivial spin structure of the propagator is not shown. As
the energy range studied in this work is far above the
threshold of J=ψπ, the contribution of this channel to the
self-energy is well-approximated by a constant whose real
part can be absorbed into the bare mass m0.
The production amplitude F2 for channel 2, shown in

Fig. 13, can now be expressed as

F2 ¼ M2ð1þ Σ2g2GZg2Þ þM1Σ1g1GZg2

¼ GZðM2ðE −m0 − g21Σ1Þ þM1Σ1g1g2Þ; ð17Þ

FIG. 12. The Yð4230Þ induced production of theD1D̄ pairs from a pointlike source. The solid lines denoteD1 andDmesons as well as
the bare propagator G0, double line stands for the dressed propagator of the Yð4230Þ, and the wiggly line corresponds to the initial
photon.
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with Mi denoting the production operator for channel i.
The expression for F1 can be easily obtained from Eq. (17)
by interchanging 1 and 2. Defining M1 ¼ g1M̂1 and M2 ¼
g2M̂2, the form factor F can be therefore expressed by

F ¼ GZ

 
g1½ðE −m0ÞM̂1 þ g22Σ2ðM̂1 − M̂2Þ�
g2½ðE −m0ÞM̂2 þ g21Σ1ðM̂2 − M̂1Þ�

!
; ð18Þ

which takes the form already expressed in the Feynman
diagrams in Sec. II, namely that it is given by some vertex
structure for the source term, times the Zc propagator times
the respective channel coupling. As indicated in the lower
line of Fig. 14, the effective coupling of the Zc to the J=ψπ
channel, here abbreviated as g2, contains besides a contact
term also a triangle topology. The same is true for M2, as
shown by the upper line of Fig. 14. The triangles forM2 and
g2 in this figure are essentially identical, except for the
couplings of Y and Zc to D-mesons, which are evidently
different. In particular, they incorporate the Dð�ÞD̄ð�ÞJ=ψ
vertex in P-wave, causing the principal value part of these
triangles to depend on a regulator that must be renormalized
by a contact term, consistent in both cases. In the picture
advocated here, where the decay of Yð4230Þ is predomi-
nantly governed by diagrams involving the D1D̄ intermedi-
ate state rather than those depicted in Fig. 14, it is reasonable
to assume that the overall coefficient M̂2 connectingM2 and
g2 is real-valued. While formally present in the transition
amplitude, we observed that the fits to the experimental data
do not need the term proportional to ðM̂2 − M̂1Þ, since it

was consistently found to be zero. We thus omit the
corresponding terms from the start and employ for the
production amplitude,

F ¼ GZ

 
g1α

ð1Þ
1 ðαð1Þ2 þ EÞ

g2α
ð2Þ
1 ðαð2Þ2 þ EÞ

!
; ð19Þ

with αðjÞi being free parameters to be determined in the fit.
These form factors appear in both the Y and the ψ decays.
The corresponding strength parameters of the latter reso-

nance are denoted as βðjÞi .

C. Observables

1. e+ e− → D0D�−π +

With D0D�−πþ being the channel with the most direct
access to the molecular nature of the Yð4230Þ, one expects
the tree-level decay, shown in Fig. 3(a), to provide the most
significant contribution followed by the triangle loop and
contact interactions. As argued in Appendix A, see the
discussion below Eq. (A16), the D1ð2420Þ can decay into
D�π in both S- and D-wave, such that the spin structure of
the Y → D0D�−πþ amplitude can be written as

Mi
Y→DD�π ¼ GY

	
ðMDD�π

Y CT Þij −
gY0ffiffiffi
2

p ðhπ1dð3pi
πp

j
π − p2

πδ
ijÞ

− hπ1sωπδ
ijÞ½GD1

ðED�πÞ

− 2g2Z0T D1DD�GZðEDD� Þ�


ϵ�jD� ; ð20Þ

where we introduced as shorthand notation hπ1s ¼
h0s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimD1
mD�

p =ð ffiffiffi
3

p
fπÞ and hπ1d ¼

ffiffiffiffiffiffiffiffi
2=3

p
h0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimD1

mD�
p =fπ .

The D1 → D�π couplings h0s and h0 are fixed from the
D1 decay properties—details are given in Appendix A. To
respect the Goldstone theorem, stating that the pion ampli-
tude has to vanish in the chiral limit for pπ → 0, the S-wave
vertex and other amplitudes below scale with the on shell
pion energy ωπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
π

p
. The indices i, j are the spin

indices and a summation over j is assumed. The tree-level
diagram is shown in Fig. 3(a). Additionally, the produced
DD̄� pair can rescatter into the Zcð3900Þ shown in diagram
3(c) via a triangle loop. The Lagrangian further allows for a
direct pointlike transition of the Yð4230Þ → D0D�−πþ in an

FIG. 14. Upper line: Feynman diagrams for production oper-
ator for Yð4230Þ → J=ψππ. In the full amplitude the J=ψ and one
of the pions undergo final-state interactions driven by the Zc.
Lower line: the corresponding transition Zc → J=ψπ.

FIG. 13. Feynman diagram for production of channel 2. The scattering amplitudes Tij in the channels ijði; j ¼ 1; 2Þ are related to the
Zc propagator as Tij ¼ giGZgj.
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S-wave, corresponding to diagram in Fig. 3(b). The phase of
this diagram is fixed by the rescattering of theDD̄� pair into
the Zcð3900Þ, where the formalism described in Sec. III B
is used,

ðMDD�π
Y CT Þkj¼GZðEDD� ÞgZ0ωπ

�
αð1Þ1 ðαð1Þ2 þEDD� Þδkj�: ð21Þ

This expression agrees with Eq. (19), only that the
generic name g1 used there was now adapted to the notation
employed in this section.
The relative factor of 2 between the tree-level and Zc

contributions comes from the isospin coefficient of
the Yð4230Þ wave function shown in Eq. (4), as the
Z−
c ð3900Þπþ pair is produced via Yð4230Þ → Dþ

1 D
− and

Yð4230Þ → DD̄1. The coefficients of the isotriplet pro-
duction of the Zcð3900Þ from D�D̄ and the C ¼ −1
eigenstate are absorbed into the coupling gZ0 of the
Zcð3900Þ with DD̄�.
Formally, the Yð4230Þ should be treated as emerging

from a DD̄�π three-body system, which can be most
conveniently handled using time-ordered perturbation
theory [67]. In preparation for this more complete treat-
ment, that we will attack in a subsequent publication, we
evaluate also the loop integrals in this work using the same
formalism. Thus, the scalar triangle with pion emission is
given by

T D1DD� ¼
Z

d3l
ð2πÞ3

1

8ωD1
ωDωD�

×
1

E − ωD1
− ωD

1

E − ωπ − ωD� − ωD
; ð22Þ

where the D1 energy is given by ωD1
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmD1
− iΓD1

=2Þ2 þ l2
q

, with mD1
and ΓD1

for the mass

and width of the D1, respectively. The other particle
energies are defined analogously, however, with their
widths neglected. The width of the D1 can here be treated
as constant, since the D1 pole is sufficiently high above the

πD� threshold [58]. We checked that the energy depend-
ences of the various loop diagrams included in this study
agree to the analogous loops evaluated covariantly. As
argued above, a simultaneous treatment of Y → J=ψππ and
Y → DD̄�π is possible only if also the interference with the
ψð4160Þ is included. The contribution of ψð4160Þ →
D0D�−πþ is parametrized as

Mi
ψ→DD�π ¼ GψgZ0GZωπ

×
�
βð1Þ1 ðβð1Þ2 þ EDD�Þδij�ϵ�jD� ; ð23Þ

again in line with Eq. (19). The free parameters that appear
in the equations above were fixed in a fit to data—the
resulting values are listed in Table II.
Here, a comment is in order. As our focus lies in

examining the interference effect between Yð4230Þ and
ψð4160Þ on the line shapes in various channels—specifi-
cally, for eþe− → D0D�−π, J=ψπþπ−, J=ψKþK−, hcπþπ−,
χc0ð1PÞω, J=ψη, andXð3872Þγ—we derive the correspond-
ing observables by multiplying the amplitudes MY and
Mψ , discussed in this and subsequent sections, by the same
complex couplings gγR ¼ expðiδRγÞem2

R=fR of the photon
with the resonance R as defined in Eq. (A23), where R
represents both Yð4230Þ and ψð4160Þ. Clearly, for all
channels listed above, only the relative phase of the two
resonances plays a role. This is, however, not the case for
eþe− → μþμ−, where the two phases enter individually, see
Sec. III C 7 for details.

2. e+ e− → J=ψπ +π −

The Feynman diagrams for eþe− → J=ψπþπ− are
shown in Fig. 4. The dominant contributions corresponding
to the molecular nature of the Yð4230Þ are the box, below
denoted as M□, and triangle, M△, topologies, since those
contain the D1D̄ intermediate state. As the second triangle
in Fig. 4(c) is divergent, due to the internal P-wave vertex
that is connected to a J=ψ coupling to a pair of Dð�Þ

mesons, a counterterm M△

CT is also introduced,

Mi
Y→J=ψππ ¼ GY

�
ðMJ=ψππ

Y CT Þil − gY0ffiffiffi
2

p ðhπ1dð3pi
π1p

j
π1 − δijp2

π1Þ − hπ1sωπ1δ
ijÞ

× 2ððM□Þjl þ ðM△Þjl þ ðM△

CTÞjlÞ
�
ϵ�lJ=ψ þ ðpπ1 ↔ pπ2Þ;

Mi
ψ→J=ψππ ¼ Gψ ½βð2Þ1 ðβð2Þ2 þ EJ=ψπ1Þ�gZilJ=ψπωπ1GZðEJ=ψπ1Þϵ�lJ=ψ þ ðpπ1 ↔ pπ2Þ; ð24Þ

where gZc
J=ψπ is the coupling of Zc → J=ψπ, given by the triangle transition shown in Fig. 14,

gZcik
J=ψπ ¼ gZ0ðM△

2 Þik þ ωπ2c
△

CTδ
ik: ð25Þ
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To reduce the runtime of the numerical evaluation of the
loop integrals only two out of four contributions of the
Yð4230Þ wave function shown in Eq. (4) with pπ1 ↔ pπ2
are considered, as the differences due to isospin breaking
are negligible small. For example, for the box topologies
shown in Fig. 5 only the particle content spelled out first at
each line in the boxes is evaluated explicitly, while those in
brackets are included via a multiplication with a factor of 2.

The Yð4230Þ contact term MJ=ψππ
Y CT has two contributions,

one in the ππ invariant mass from the subtraction poly-
nomial of the ππ final-state interaction and the other in

J=ψπ from the chiral contact term and intermediate
Zcð3900Þ,

ðMJ=ψππ
Y CT Þik ¼ GZgZikJ=ψπωπ1

�
αð2Þ1 ðαð2Þ2 þ EJ=ψπÞ

�
þ Ω11Mππ

0 þ 2ffiffiffi
3

p Ω12MKK
0 ; ð26Þ

with c△CT denoting the free parameter of the triangle counter-
term. The amplitudes of the loop diagrams are given below,
where the notation and numerical implementation are
discussed in Appendix D,

ðM□Þjl ¼ BIðgπ1gJ=ψD�D� ; qlIp
j
π2 − pl

π2q
j
I − δljðpπ2 · qIÞÞ þ BIIðgπ2gJ=ψDD� ; pl

π2q
j
II − δjlðpπ2 · qIIÞÞ

þ BIIIðgπ1gJ=ψDD; p
j
π2q

l
IIIÞ;

ðM△Þjl ¼ T D1DD�g2Z0GZðEJ=ψπÞðM△

2 Þjl
ðM△

2 Þjl ¼ T 1
2ðgπ2gJ=ψDD� ; pl

π2q
0 j
I − δljðpπ2 · q

0
IÞÞ þ T 2

2ðgπ1gJ=ψDD; p
j
π2q

0 l
II Þ

þ T 3
2ðgπ2gJ=ψD�D� ; q0 lIIIp

j
π2 − pl

π2q
0 j
III − δljðq0III · pπ2ÞÞ;

ðM△

CTÞjl ¼ T D1DD�gZ0GZðsJ=ψπÞc△CTδjlωπ2 ; ð27Þ

where the qI, qII, qIII, q0I, q0II, q0III denote the relative
momenta at the J=ψDð�ÞDð�Þ vertex for the different box
and triangle topologies. Additional free parameters come
from the production polynomials of the Yð4230Þ and

Ψð4160Þ contact terms, namely αð2Þ1 , αð2Þ2 and βð2Þ1 , βð2Þ2

respectively, as well as the triangle counterterm c△CT. The
inclusion of the ππ − K̄K final-state interaction is discussed
in Appendix B.

3. e+ e− → hcπ +π −

In general, one expects the diagrams for hcπþπ− to be
analogous to J=ψππ, apart from the fact that the Yð4230Þ
contact term is omitted as it violates HQSS. In addition,
since the hcπ subsystem does not show any prominent
signal of the Zcð3900Þ, no triangle operators are included
in this study. Meanwhile, the hcπ subsystem shown in
Ref. [68] shows a strong peak from the Zcð4020Þ, which
would, however, require to include the coupling of
Yð4230Þ → D1D�, as the Zcð4020Þ couples strongly to
D�D̄�. On the other hand, the Zcð4020Þ is not anticipated
to generate significant structures in the total cross section
of hcππ, which is part of the current analysis. The inclusion
of this state will be postponed for the upcoming full
coupled channel analysis, such that for now we only
consider the box topologies, where the free parameters
are fixed by D0D�−πþ, J=ψπþπ− and the two-body final
states. The amplitude therefore reads,

Mi
Y→hcππ

¼ GYgy0ffiffiffi
2

p �
hπ1sωπ1δ

ij − hπ1dð3pi
π1p

j
π1 − δijp2

π1Þ
�

×Mhcππ
□

mhcϵljmp
m
π2ϵ

j
hc
; ð28Þ

with Mhcππ
□

given by

Mhcππ
□

¼ 4gm3=2
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimDmhcmχc0
pffiffiffi
3

p
fπfχc0

ðBhcππ
I þ Bhcππ

II Þ: ð29Þ

4. e+ e− → J=ψK +K −

With J=ψππ included in the study, we can also easily
access J=ψKK̄, as the main contribution is expected to go
via the ππ → KK̄ final-state interaction in the S-wave,
where no new parameters need to be introduced. Here the
contributions of the triangle topologies are negligible, as
the partial wave projection on the ππ system contains a tiny
S-wave piece due to the presence of the near on shell
Zcð3900Þ in the J=ψπ subsystem. The amplitude is given by

Mi
Y→J=ψKK ¼ GY

�

MJ=ψKK

Y CT

�
il
− ðhπ1dð3pi

1p
j
1 − δijp2

1Þ

þ hπ1sωπ1δ
ijÞ
h
Mjl

Y→J=ψKK

þ
h
ðMloop

J=ψππÞjl
i
FSI

ππ→KK

i�
ϵlJ=ψ ; ð30Þ
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where we collected the loop diagrams in the amplitude

ðMloop
J=ψππÞjl ¼ ðM□Þjl þ ðM△Þjl ð31Þ

and

ðMJ=ψKK
Y CT Þkl ¼

�
Ω21Mππ

0 þ 2ffiffiffi
3

p Ω22MKK
0

�
δkl: ð32Þ

Furthermore, Mjl
Y→J=ψKK is a strange source shown in

Fig. 6. We postpone the inclusion of strange triangles,
including the Zcsð4000Þ, to a later, more complete analy-
sis. In this sense we regard this channel in this analysis as a
consistency check. On the other hand, the Zcsð4000Þ can
only appear in conjunction with an additional kaon within
the triangular mechanism. Consequently, this state is
expected to contribute significantly only in the energy
range around 4470 MeV, well-exceeding the energy range
of interest in this study, even when accounting for the
Zcs width.

5. e+ e− → χ c0ω

The Feynman diagrams are shown in Fig. 10. The main
contribution is expected from the triangle, which scales like
the scalar triangle as both theD1 → Dω and DD → χc0 are
S-wave at leading order. Additionally, there are two S-wave
contact terms for the Yð4230Þ and ψð4160Þ respectively,

Mi
Y→χc0ω

¼ GYðc△χc0ωmJ=ψmDT χc0ω þ cYχc0ωÞϵiω;
Mi

ψ→χc0ω ¼ Gψc
ψ
χc0ωϵ

i
ω; ð33Þ

where c△χc0ω, cYχc0ω, and cψχc0ω are free parameters. The
width of the ω is included by convolving the cross section
for a fixed ω mass with the ω spectral function—see,
e.g., Ref. [69].

6. e+ e− → J=ψη

For J=ψη, the couplings of the triangle shown in Fig. 11
are fixed. The vector-vector-axial vector vertex of the
contact terms must couple via ϵμνρσ which reduces to a
three-dimensional ϵmjl in the rest frame of the incoming
particles,

Mi
Y→J=ψη¼GY

�
−

1ffiffiffi
6

p ½hπ1dð3pi
ηp

j
η−δijp2

ηÞ

−hπ1sωηδ
ij�T J=ψηðgDD�

J=ψ ;qlÞþcYJ=ψηp
l
η

�
ϵmjlϵmJ=ψ ;

Mi
ψ→J=ψη¼Gψc

ψ
J=ψηϵ

ijlpj
ηϵlJ=ψ ; ð34Þ

where q denotes the relative momentum at the J=ψ vertex
and cYJ=ψη and c

ψ
J=ψη are free parameters. We do not consider

the mixing of the singlet η1 and octet η8 to the physical η

and η0 states, but just match η8 ¼ η, as the mixing effects
are small.

7. e+ e− → Xð3872Þγ
The diagrams for Yð4230Þ → Xð3872Þγ are shown in

Fig. 8, and are analogous to Yð4230Þ → Zcπ as well as
J=ψη. However, the quality of data for Xð3872Þγ does not
allow one to distinguish between the triangle and contact
transition of Yð4230Þ → Xð3872Þγ, such that we omit the
latter from the start.3 The vector-vector-axial-vector
coupling of D1 → D�γ scales with ϵkjl, such that the
amplitude is given by

Mi
Y→Xγ ¼ GYcYXγT Xγϵ

ijlϵjγϵlX;

Mi
ψ→Xγ ¼ Gψc

ψ
Xγϵ

ijlϵjγϵlX; ð35Þ

with cYXγ and cψXγ being free parameters to be determined in
a fit.

8. e+ e− → μ+ μ−

As already explained in Sec. II E we consider three main
contributions for eþe− → μþμ−, namely,

σeþe−→μþμ− ¼ σtreeeþe−→μþμ− j1þAR þAmixj2 ð36Þ

with

σtreeeþe−→μþμ− ¼ 4πα2

3s
ð37Þ

for the tree-level amplitude and we introduce,

AR ¼
X
R¼Y;ψ

gγRGRgγR ð38Þ

and

Amix ¼
X
R≠R0

gγRGRMRR0
mixGR0gγR0 ; ð39Þ

where gγR ¼ expðiδRγÞem2
R=fR defined in Eq. (A23) with

δRγ denoting a phase factor discussed in Sec. IV. The
individual terms in Eq. (36) represent the different diagrams
shown in Fig. 9. The imaginary part of MRR0

mix is fixed by
unitarity and can be reconstructed from the optical theorem

ImMRR0
mix ¼

1

2

X
f

Z
dΠfM�ðR0 → fÞMðR → fÞ; ð40Þ

3We can get equally good fits to the data by replacing the
triangle by the contact term, since the quality of the data does not
allow one to see the different energy dependences of the two
amplitudes.
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where f ¼ DD�π; χc0ω; J=ψη and Xð3872Þγ are all final
states with significant contributions from both ψð4160Þ and
Yð4230Þ studied in this work. Note that the sum runs over
all allowed final states with the given particle content—
accordingly f ¼ ½DD�π� should be understood as

½DD�π� ¼ fD−D�0πþ; D−D�þπ0; DþD̄�0π−;

DþD�−π0; D0D�þπ−; D0D�0π0;

D0D�−πþ; D0D̄�0π0g: ð41Þ

Since all those channels are connected via isospin symmetry,
they can be included via a proper multiplicity factor—clearly
for that we need to neglect, e.g., the mass differences
between the different channels. For example, for DD�π
we denote decay amplitudes for the transition of Yð4230Þ
and ψð4160Þ to the experimentally measured channel
D0D�−πþ as A and B, respectively,

MðY → D0D�−πþÞ ¼ A;

Mðψ → D0D�−πþÞ ¼ B; ð42Þ

where in accordance to Eq. (39) A and B do not contain the
resonance propagators, but only the decay vertices.
Summing over all channels one therefore obtains,

ImMYð4230Þψð4160Þ
mix ¼ 1

2

X
f

Z
dΠfM�ðψ → fÞMðY → fÞ

¼ 1

2

Z
dΠ 4

�
B�Aþ 1

2
B�A

�

¼ 1

2

Z
dΠ 6B�A; ð43Þ

where f∈ ½DD�π� was defined in Eq. (41). The factor 4 in
Eq. (43) arises from the four different decay modes of the
Yð4230Þ wave function given in Eq. (4). For each mode the
subsequent D1 decay can produce a charged or a neutral
pion, e.g., D0

1 can decay into D�0π0 and D�þπ−, where the
amplitudes scale as 1 and 1=

ffiffiffi
2

p
, respectively, due to the

isospin factors. The additional factors arising in the other
channels are 3=2 for J=ψππ and 1 for χc0ω; J=ψη and
Xð3872Þγ. The real part of MRR0

mix can in principle also be
constructed dispersively, however, there is still freedom in
the subtraction constant. So for now we just approximate it
via a real constant

MRR0
mix ¼

cmix

2
þ i
2

X
f

Z
dΠfM�ðR0 → fÞMðR→ fÞ: ð44Þ

IV. FIT STRATEGY, RESULTS AND DISCUSSION

In 2022 and 2023, BESIII published new XYZ data sets
for J=ψπþπ− [8] and D0D�−π [39] with very impressive
statistics. Those data clearly highlight the asymmetric line
shapes of the total cross sections in these two channels. It
turns out that from those channels most of the parameters
specific for the Yð4230Þ are fixed. The Zcð3900Þ shows
up prominently only in the DD̄� [70] and J=ψπ� [71]
subsystems of those channels. To get a better constraint on
the light quark SU(3) singlet and octet components (for
details see Appendix B) we also include J=ψKþK− in the
first fit. This may overestimate the contributions of the
contact term in J=ψKþK− to some extent as it needs to
compensate for a possible contribution from the missing
Zcsð4000Þ triangle, but allows us to reduce the correlation
of the parameters. We do not include the data for the
J=ψπ0π0 channel in the fit, due to their reduced statistics in
comparison to J=ψπþπ−. Since μþμ− is the only channel
showing a clear separation of the Yð4230Þ and ψð4160Þ
signals and their interference, it is also included in the first
fit. This further allows us to properly separate photon and
strong couplings, since in the hadronic channels they only
appear as a product. With this in mind, our fit strategy is the
following:
(1) The resonance parameters of the Yð4230Þ and

Zcð3900Þ, as well as the channel dependent para-
meters of D0D�−π, J=ψπþπ−, J=ψKþK− and μþμ−

are fitted simultaneously to the D0D�−π, J=ψπþπ−,
J=ψKþK− and μþμ− total cross sections, the DD̄�,
J=ψπ� and πþπ− invariant mass distributions, and
the pion Jackson angle extracted from D0D�−πþ.

(2) With the resonance and channel dependent para-
meters of D0D�−πþ, J=ψπþπ− and μþμ− being
fixed, the remaining parameters in the channels
χc0ω; J=ψη and Xð3872Þγ are fitted to the corre-
sponding cross sections data.

(3) At last, the parameters obtained in the previous steps
are used as initial parameters for a global fit to all
observables.

If we were working with a complete formalism, with all
relevant channels dynamical and unitarity imposed, all
parameters would necessarily be real. However, here some
ingredients are approximated. e.g., as shown in Ref. [72]
the direct transition of a photon to the D1ð2420ÞD̄
intermediate state that predominantly couples to the
Yð4230Þ, if it is a hadronic molecule, is suppressed by
heavy quark spin symmetry, since this narrow D1 state has
a light quark cloud with j ¼ 3=2. On the other hand, there
is no such suppression for the transition of the photon to
D1ð2430ÞD̄, where the broad D1ð2430Þ has its light quark
cloud with j ¼ 1=2. The D1ð2430ÞD̄ intermediate state
may thus act as a doorway state to feed the production
of the molecule. This effect can be included effectively
via a complex coupling of the Yð4230Þ to the photon.
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Moreover, the ψð4160Þ production from a photon sits in
the tail of the ψð4040Þ [18]—an effect which may also be
included by allowing for a complex coupling. It is worth
noting that, while all hadronic cross sections are sensitive
to the difference of those two phases only, the leptonic
cross section eþe− → μþμ− probes the phases individu-
ally, as shall be discussed below. It turns out that all other
parameters of the model can be chosen real valued.
The results of the fits are shown in Figs. 15–20; the

parameters and statistical uncertainties that emerge from
the fit are listed in Table I. The numerical inputs for the
particles masses and widths are given in Table II. We see
that the interplay of the ψð4160Þ and Yð4230Þ is important

and shows a nontrivial impact in almost all final states. This
naturally explains the large scatter of the resonance
parameters of the Yð4230Þ in the single channel analyses
of BESIII—cf. Fig. 1.
With the central values of the parameters fixed in the fits,

the pole parameters of the Yð4230Þ can be extracted from
its propagator. We find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sYð4230Þpole

q
¼
�
4227� 4 −

i
2
ð50þ8

−2Þ
�

MeV; ð45Þ

where the uncertainty estimation is described in
Appendix C.
We now discuss the results for the various channels in

some detail. The results for the D0D�−π channel are shown
in Fig. 15. The apparent peak structure around 4.22 GeV
emerges in our study from the interplay of the ψð4160Þ and
Yð4230Þ. Remarkably, this interplay manifests differently in
the D0D�−π and J=ψππ channels—we refer to Fig. 2 for an
illustration. In addition to this, we find a strong enhance-
ment at the D1D̄ threshold in the cross section, mainly
driven by the prominent D1 decay in the D-wave. The
deviations of our results from the data, starting around
4.35 GeV, are expected, as the molecular scenario predicts
an additional bound state in the D2D̄� channel [25,46,47],4

which will be included in a subsequent study. The peak at

TABLE I. Parameters of the model as determined in the fit. We
find the value of fJ=ψ to be strongly dependent on the fit range in
D0D�−πþ, such that we did not assign an uncertainty to this
quantity.

Name Value

Y mY ð4227� 0.4Þ MeV
gY0 − ð10.4� 0.2Þ GeV
ΓY
in ð54� 1Þ MeV

1=fY − ð0.012� 0.001Þ
δYγ ð17.1� 0.1Þo

ψ 1=fψ − ð0.023� 0.003Þ
δψγ ð67� 2Þo

Zc mZ ð3884� 1Þ MeV
gZ0 ð4.15� 0.06Þ GeV
ΓZ
in ð48� 1Þ MeV

DD̄�π αð1Þ1
− ð128� 12Þ

αð1Þ2
− ð3.95� 0.01Þ GeV

βð1Þ1
− ð202� 18Þ

βð1Þ2
− ð3.89� 0.1Þ GeV

J=ψπþπ− αð2Þ1
− ð133.9� 4Þ

g1 − ð14.9� 0.9Þ10−3
g8 ð24� 1Þ10−3
h1 − ð16.8� 2.4Þ10−3
h8 ð15� 0.7Þ10−3
βð2Þ1

(0� 0.1)

c△CT − ð0.4� 0.1Þ GeV2

fJ=ψ 456 MeV

χc0ω c△χc0ω ð1.469� 0.015Þ GeV2

cYχc0ω ð0.36� 0.07Þ10−3
cψχc0ω − ð16� 0.5Þ10−3

J=ψη cYJ=ψη ð67.3� 3.4Þ10−3 GeV−1

cψJ=ψη ð298� 11Þ10−3 GeV−1

Xγ cYXγ ð0.71� 0.15Þ GeV2

cψXγ ð0.017� 0.003Þ GeV
μþμ− cmix (0.6� 0.01)

TABLE II. Input values for masses and widths used in this
work, taken from the central value of the Review of Particle
Physics by the Particle Data Group [66].

Parameter Value [MeV]

m0
π 135

m�
π 139.6

m�
K 493.7

mη 547.9
mω 782.7
m0

D 1864.8
m�

D 1869.7
m�0

D 2006.9
m��

D 2010.3
mD1

2420.8
mJ=ψ 3096.9
mχc0 3414.7
mhc 3525.9
mXð3872Þ 3871.7
mψð4160Þ 4191

ΓD� 83.4 × 10−3

ΓD1
31.7

Γψð4160Þ 70

4Another bound state is expected in the D1D̄� channel,
however, this channel does predominantly decay into D�D̄�π
and not into the channel studied here, D�D̄π.
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low DD̄� invariant masses is generated by the interplay of
the tree-level two-step decay Yð4230Þ → D1D̄ → D�πD̄,
the contact mechanism and the triangle operator. The last
two mechanisms involve the rescattering of DD̄� into the
Zcð3900Þ. The resonance parameters of the Zcð3900Þ are
very poorly constrained. The fit seems to prefer masses
slightly above the DD̄� threshold, however, for the whole
mass range of approximately mZ ∈ ½3.86; 3.9� GeV, the
data are described with similar quality. In the current fit
the pole closest to the real axis of the Zcð3900Þ appears at
the þ− sheet with respect to the J=ψπ and DD̄� channels,
respectively [where þð−Þ denotes the sign of the imagi-
nary part of the three-momentum in each channel],

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sZcð3900Þ
pole

q
¼ ð3884 − i44=2Þ MeV. In comparison

to Ref. [73] we find a slightly higher mass, however,
double the width for the Zcð3900Þ. It remains to be seen if
this feature is caused by the incomplete ππ − KK̄ final-
state interaction, used in this work. The data for the pion
Jackson angle are also reproduced well. Contrary to
Ref. [36], in this study, the S-wave is more prominent

due to the presence of the ψð4160Þ as well as the S-wave
decay of the D1ð2420Þ.
Naturally, a prominent contribution from the D1D̄ inter-

mediate state not only influences strongly the energy
dependence of the total cross section but also the D�π
invariant mass distributions. Our predictions for those at
total energies near the Yð4230Þ pole location and near the
nominalD1D̄ threshold are shown in the left and right panel
of Fig. 16, respectively. In both panels the peak from theD1

is clearly visible at the upper end of the spectrum.While the
data currently available do not allow us to provide an
unambiguous determination of the various parameters
leaving some freedom in the actual height of the D1 signal,
the presence of such a peak is a model independent
prediction of the molecular scenario. Any model that does
not account for the D1D̄ as a prominent component of the
Yð4230Þ wave function will not show such a structure—as
such this invariant mass distribution is a crucial observable
to either support or disprove the molecular picture.
The results for the J=ψππ final state are shown in

Fig. 17. A linear noninterfering background of 9 pb is

FIG. 16. Predictions for the D�π invariant mass distributions to be measured in eþe− → D̄D�π. The left (right) panel shows our
prediction at 4230 (4300) MeV.

FIG. 15. Fit results for theD0D�−π cross section, theD0D�− invariant mass distribution and the pion Jackson angle.D0D�−πþ R-scan
and XYZ data are from Ref. [15], D0D�− invariant mass distribution is from Ref. [70].
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added due to the presence of the J=ψπ continuum. The
loop contributions, dominant in the molecular scenario,
enhance the cross section at the D1D̄ threshold, allowing
for a description of the highly asymmetric line shape
with just a single pole—in the experimental analyses of
Refs. [7,8] this asymmetry was generated by the additional
state Yð4320Þ as described in the introduction. It should be
noted that also in Ref. [50] an analysis is presented, where,
in particular, the J=ψππ data is described with essentially
the same resonance content as presented here, along with
the addition of a ψð4415Þ state, but without including
threshold effects. In this case, the asymmetry of the peak in
the total cross section is driven by interferences, predomi-
nantly involving ψð4160Þ and ψð4415Þ. While we regard
our explanation of the data as more natural, since the data
indicate some structure right at the D1D̄ threshold, at some
point experiment will allow us to choose between the two
explanations, not only since the energy dependences in the
mentioned energy range are different (but not sufficiently
to be distinguished given the current quality of the data),
but also since an analysis of the type presented in Ref. [50]
will provide completely different DD̄� and D�π invariant
mass distributions compared to the ones shown in Figs. 15
and 16, respectively.
The J=ψπ� invariant mass distribution shows a promi-

nent peak, generated by the Zcð3900Þ pole, the D�D̄
threshold and the nearby triangle singularity, and its
reflection. In principle, the J=ψπ� and D0D�− line shape
can also be described by just including the triangles and
introducing a contact interaction for DD̄� → DD̄�, where
the cusp is then generated simply by kinematic effects of
the DD̄� rescattering without any resonance structure.

However, we find that the strength of the DD̄� → DD̄�
transition potential, necessary for producing the pro-
nounced structure in the D�D̄ invariant mass distribution,
becomes too large to justify a perturbative approach. We
confirm the observation made in Ref. [74] that with this
strength parameter the next order in DD̄� scattering
becomes larger than the perturbative rescattering; more-
over, resumming the scattering series generates a pole in
the subsystem. Based on this, we argue that the existing
data calls for the presence of a Zcð3900Þ pole.
As pointed out in the Introduction, the ψð4160Þ needs to

be included to get a consistent simultaneous description of
the J=ψππ and D�D̄π final states. We allow this well-
established vector charmonium state to contribute to both
of these channels (as well as to all other channels included
in the analysis), however, the fit reveals that no significant
coupling of the ψð4160Þ to the J=ψππ is needed. Indeed,

the fit puts the parameter βð2Þ1 , introduced in Eq. (24), for the
production of the ψð4160Þ to a value consistent with zero.
The results for the μþμ− final state are shown in the

upper panel of Fig. 18. The cross section is completely
dominated by the real tree-level amplitude, shown as the
first diagram in Fig. 9. Accordingly, following Eq. (36), the
signal of interest to us reads to very good approximation

σeþe−→μþμ− − σtreeeþe−→μþμ−

≈ 2σtreeeþe−→μþμ−ReðAR þAmixÞ: ð46Þ

This quantity is shown in the lower panel of Fig. 18. As
argued above, we allow for complex couplings at the
resonance-photon vertices. Contrary to all observables

FIG. 17. Fit results for the J=ψπþπ− cross section and the J=ψπ� and πþπ− invariant mass distributions. J=ψπþπ− XYZ data from
Ref. [8], J=ψπ� and πþπ− invariant mass distribution from Ref. [71]. The data for the J=ψKK̄ channel are taken from Ref. [19].
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studied so far, where only the relative phase of the Yð4230Þ
and ψð4160Þ contributions played a role, this leptonic cross
section is sensitive to the individual phases of these
resonance contributions. The phases of those couplings
are thus fixed by the fit to the μþμ− cross section.
In Ref. [18] a sum of Breit-Wigner terms with complex

couplings is used to parametrize the data including the
ψð4040Þ;ψð4160Þ; Sð4220Þ≡ Yð4230Þ [and the ψð4415Þ,
which is, however outside our energy range of interest].
We find that the complex phase δψγ called for by the fit in
the production vertex of the ψ to the photon agrees within
uncertainties to the one of the experimental paper. With
this phase included we can reproduce the μþμ− lineshape
in the energy range studied. We see that the contribution of
the ψð4160Þ is dominant in comparison to that of the
Yð4230Þ at least in the energy below 4.2 GeV, as expected
in the molecular scenario, since the coupling of a photon to
theD1D̄ channel violates spin symmetry [26]. One should,
however, keep in mind that there should also be some
suppression of the coupling of the ψð4160Þ to the photon,
if it indeed is predominantly a D-wave charmonium state.
The peak in the data near 4230 MeV in our fits emerges
from both the interference of the two resonances and the
Yð4230Þ itself. The main contribution to the imaginary part
of the pertinent mixing matrix element of the ψð4160Þ
and the Yð4230Þ is generated from the DD̄�π intermediate
state—this part is fixed completely by the data for
eþe− → DD̄�π. As outlined above, the corresponding real
part is here taken as a free parameter that is adjusted in the

fit. It is reassuring, however, that the real and the imaginary
part of the mixing amplitude contribute with comparable
strength, as shown in Fig. 19. Although the energy
dependence emerging from the real and imaginary part
of the mixing amplitude, Amix, resembles that of a single
resonance structure, it emerges from an interplay of the
different resonance propagators as well as the mixing
amplitude, MRR0

mix, as outlined in Eq. (36) and below. One
may naively expect that the imaginary part of the mixing
matrix element does not contribute to the total cross
section significantly, as only interferences of the strong
amplitudes with the real tree-level amplitude matter
quantitatively. However, the phases of the resonance
propagators in Eq. (36) nontrivially mix real and imaginary
parts of the mixing amplitude, allowing both contributions
to interfere with the tree-level amplitude.
The fit result for J=ψKþK− is shown in the top right of

Fig. 17. Note that the line shape emerging for this channel
is closely linked to that of the J=ψππ channel—there are
no new independent parameters entering for this hidden
strangeness channel. In our fit the contact term is the
dominant contribution. A possible reason is that it needs to
absorb the effects of the Zcsð4000Þ and the corresponding
triangle diagrams not included in this analysis, though
their main effect is expected at the energies above those
considered here. The boxes again show a very strong
enhancement in the cross section at the D1D̄ threshold
explaining the apparent asymmetry in the data. We find the
Y → J=ψπþπ− → J=ψKþK− contribution generated by
the ππ=KK̄ FSI to be by far dominant in the studied
energy range, in comparison to the box with strange
D-mesons, as shown in Fig. 6, where only the D1D̄ cut
goes on shell. At higher energies, above the D�

sD̄K
threshold at about 4.47 GeV, the D�

sD̄K intermediate state
in this box will go on shell. Consequently, we expect a
more pronounced contribution from the strange source
in this mass range. Starting from this energy also the
Zcsð4000Þ generated via the triangle mechanism should
contribute considerably.

FIG. 19. Contributions to the cross section difference from the
real and imaginary parts of the mixing of Yð4230Þ and Ψð4160Þ
in eþe− → μþμ−, denoted by Amix in Eq. (39). The brown dash-
dotted curves here and in Fig. 18 are identical.

FIG. 18. Fit results for the μþμ− cross section. Upper panel: the
measured Born cross section. Lower panel: the same, however,
with the cross section from the tree-level amplitude subtracted.
The data are taken from Ref. [18], where the data points with an
uncertainty smaller than 32 pb are shown in black to better
highlight the structure in the data.
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It should be stressed that in our analysis the unusual
energy dependences of the J=ψππ and J=ψKK̄ cross
sections emerge from the same physics, which is natural
given the approximate SU(3) flavor symmetry of QCD,
while in the experimental analyses the former is driven by
an interference of the Yð4230Þ with the new resonance
Yð4320Þ [8] and the latter predominantly by the shifted
threshold for J=ψK̄K vs J=ψππ with some small distortion
from an interference with another new resonance, called
Yð4500Þ [19].
To complete the discussion of the final states with three

hadrons, in Fig. 20 we show the cross sections with an hc
in the final state. These rates are of particular interest, since
the hc has its c̄c pair in the spin singlet state, which was
originally produced in a spin triplet via its coupling to
the photon. Thus, in this transition the heavy quark spin
changes, at odds with heavy quark spin symmetry.
However, besides violations of that symmetry due to the
relatively small charm quark mass, spin symmetry con-
servation can also be circumvented by the presence of
hadronic molecules; In the molecular picture it is natural to
expect the hcππ and the J=ψππ cross sections of similar
order of magnitude as is confirmed by the data, since only
in the presence of a molecule the two-meson loops that
decorrelate the heavy quark spins appear at leading order
for both channels as explained above. Moreover, by using
values for both the J=ψDð�ÞD̄ð�Þ and the hcDð�ÞD̄ð�Þ
couplings available in the literature (details on how the
various couplings were determined are given in
Appendix A), we can describe the cross sections in both
channels, providing additional support for the molecular
picture. In the hcππ channel we observe a discrepancy
between the data and our prediction starting already at
around 4.3 GeV. We think this reflects the omission of the
D1D̄� channel in our study; only once this channel is
incorporated we can include the Zcð4020Þ which might be
responsible at least for some part of this discrepancy.
We now turn to a discussion of remaining hadronic two-

particle final states, also included in Fig. 21. As one can
read from the figure, the energy dependences of the χc0ω,
the J=ψη, and the Xð3872Þγ cross section are rather
different; while the first one shows a very narrow structure,

the structure in the second is already a lot broader and the
one in the last is more than four times as broad as the first—
this is also reflected in the resonance parameters extracted
in the single channel analyses of the BESIII Collaboration
collected in Fig. 1. In contrast to this, our model allows us
to describe all three cross sections with consistent reso-
nance parameters as a result of an interplay of the two
vector resonances ψð4160Þ and Yð4230Þ; the narrow peak
in the χc0ω channel emerges from a destructive interference
of the triangle diagram shown in Fig. 10(a) and the
ψð4160Þ contact term, shown in Fig. 10(c), since the
energy dependences of the two contributions are quite
different, as can be clearly seen in Fig. 21—we included the
width of the ω by a convolution of the cross section with
the omega spectral function as explained above which is the
origin of the not vanishing cross section below the nominal
χc0ω cross section. The mechanism we propose here is
different to that studied in Ref. [75], however, the energy
dependence found there appears inconsistent with that of
the newest data set for this channel measured at BESIII
[16]. Also for the J=ψη and Xð3872Þγ final states the
interplay of the two resonances is crucial, but less dramatic.

FIG. 20. Prediction for the hcπþπ− cross section. The data are
taken from Ref. [13].

FIG. 21. Fit results for the J=ψη, χc0ω and Xð3872Þγ cross
section. The data sets are from Refs. [14,16,17], respectively.
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V. SUMMARY AND OUTLOOK

In this work we simultaneously analyzed the lineshapes
of the cross sections for eþe− to seven hadronic channels in
the mass range from 4.2 GeV to 4.35 GeV as well as data
for eþe− → μþμ−. We show that a description of all those
channels is possible with consistent resonance parameters
for a single Y state with the pole,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sYð4230Þpole

q
¼
�
4227� 4 −

i
2
ð50þ8

−2Þ
�

MeV:

This was made possible mainly because of two features
of our model: We included the interference of the exotic
Yð4230Þ with the more conventional ψð4160Þ and consid-
ered the effects of the D1D̄ intermediate states. The
prominence of the latter is natural in a scenario, where
the Yð4230Þ is a hadronic molecule in this channel. The
interference of the Yð4230Þ and ψð4160Þ is especially
important to get a consistent description of both channels
D0D�−πþ and J=ψπþπ−, making a substantial impact on
the former. It is at the same time necessary to describe the
μþμ− cross section, where the mixing of the two vector
states deduced from the strong decay channels is in fact
consistent with what is needed for the leptonic final state.
We interpret this as providing additional support for the
mixing scenario advocated here. The explicit inclusion of
the D1D̄ intermediate states reflects itself in a significant
distortion of line shapes, which are especially prominent in
final states with a J=ψ and two light mesons. In particular,
contrary to the experimental analyses, in our study the
energy dependences of the total cross sections for eþe− →
J=ψππ and eþe− → J=ψKK̄ emerge from the same phys-
ics as expected from the approximate SU(3) flavor sym-
metry of QCD.
For the other final states, within our model especially the

energy dependence of the χc0ω cross section is nontrivial,
which emerges from the distinct energy dependences of the
triangle diagram, influenced by theD1D̄ intermediate state,
and the ψð4160Þ contact term, which does not. Moreover,
within our analysis we understand that the very different
lineshapes of the χc0ω cross section and, e.g., the J=ψη
cross section emerge naturally through the interference of
the Yð4230Þ with the ψð4160Þ.
To summarize, we have demonstrated that the data for

electron-positron annihilation in to various final states in the
mass range from 4.2 GeV to 4.35 GeV are consistent with
the existence of just a single vector charmoniumlike state in
this mass range—the ψð4230Þ also known as Yð4230Þ, with
properties consistent with it being a D1ð2420ÞD̄ hadronic
molecule. Moreover, we show that a consistent description
of all channels with the same resonance content is possible
only, if we allow for an interference with the conventional
ψð4160Þ resonance.

The nontrivial insights of this work were possible only
because we studied various final states simultaneously—to
get access to reliable resonance parameters this appears to
be unavoidable, while single channel analyses have the
tendency to provide resonance parameters with a wild
scatter as shown in Fig. 1.
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APPENDIX A: LAGRANGIAN AND PARAMETER
DETERMINATION

To construct the Lagrangian we define superfields
representing the different light-quark spin multiples [76].
The ground states of heavy mesons with light quark
quantum numbers jP ¼ 1

2
− will be denoted by Ha. In the

presence of one unit of angular momentum there are two
spin multiplets, one with jP ¼ 3

2
þ and one with jP ¼ 1

2
þ. In

the following the former is of relevance, which is denoted
by Ta. The states in the latter have widths of the order of
300 MeV and are only included implicitly. All together we
may thus write,

HðQÞ
a ¼ 1þ =v

2
½D�μ

a γμ −Daγ5�;

TðQÞμ
a ¼ 1þ =v

2

�
Dμν

2aγν−
ffiffiffi
3

2

r
D1aνγ5

�
gμν −

1

3
γνðγμ − vμÞ

��
;

ðA1Þ
where a is the SU(3) flavor index. We have, e.g., for
jP ¼ 1

2
−,

Da ¼ ðD0; Dþ; Dþ
s Þ;

D�
aμ ¼ ðD�0

μ ; D�þ
μ ; D�þ

sμ Þ: ðA2Þ
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The superfields creating heavy mesons are given by

H̄ðQÞ
a ¼ γ0H

ðQÞ†
a γ0 ¼ ½D�†μ

a γμþD†
aγ5�

1þ=v
2

;

T̄ðQÞμ
a ¼ γ0T

ðQÞμ†
a γ0 ¼

�
Dμν†

2a γνþ
ffiffiffi
3

2

r
D†

1aν

�
gμν −

1

3
ðγμ−vμÞγν

�
γ5

�
1þ=v
2

: ðA3Þ

The corresponding superfields containing an antiheavy quark Q̄ can be constructed using the charge conjugation operator

C ¼ iγ2γ0, where we are following the convention CDðQÞ
a C−1 ¼ DðQ̄Þ

a and CD�ðQÞ
a C−1 ¼ −D�ðQ̄Þ

a .

HðQ̄Þ
a ¼ ½D�ðQ̄Þ

aμ γμ −DðQ̄Þ
a γ5�

1 − =v
2

;

H̄ðQ̄Þ
a ¼ γ0H

ðQ̄Þ†
a γ0 ¼

1 − =v
2

½D�ðQ̄Þμ†
a γμ þDðQ̄Þ†

a γ5�;

TðQ̄Þμ
a ¼

�
DðQ̄Þμν

2a γν −
ffiffiffi
3

2

r
DðQ̄Þ

1aνγ5

�
gμν −

1

3
ðγμ − vμÞγν

��
1 − =v
2

;

T̄ðQ̄Þμ
a ¼ γ0T

ðQ̄Þμ†
a γ0 ¼

1 − =v
2

�
DðQ̄Þμν†

2a γν þ
ffiffiffi
3

2

r
DðQ̄Þ†

1aν

�
gμν −

1

3
γνðγμ − vμÞγ5

��
: ðA4Þ

The heavy field operators contain a factor
ffiffiffiffiffiffiffi
MH

p
and

therefore have dimension 3=2. Pseudoscalar mesons couple
through the vector Vμ and axial-vector Aμ current con-
taining an even and odd number of boson fields, respec-
tively,

Vμ ¼
1

2
ðu†∂μuþ u∂μu†Þ

Aμ ¼
i
2
ðu†∂μu − u∂μu†Þ; ðA5Þ

conserving chiral symmetry. Chiral symmetry violation is
introduced via constructions of the kind,

χ� ¼ u†χu† � uχ†u; ðA6Þ

with χ ¼ 2BM, where M is the quark mass matrix and B
is a scale parameter related to the chiral condensate. Here
the exponential parametrization is employed for the light
Goldstone boson fields,

u ¼ exp

�
i

Φffiffiffi
2

p
fπ

�
;

Φ ¼

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCCA; ðA7Þ

with fπ ¼ 92 MeV denoting the pion decay constant in the
chiral limit. The Lagrangian is constructed by imposing
invariance under heavy-quark spin and chiral transforma-
tion [77–79]. The kinetic terms are

Lkin ¼ ihH̄bvμD
μ
baHai þ

fπ2

4
ðh∂μu∂μu†i þ hχþiÞ

þ hT̄μ
bðivνDν

ba − δbaΔTÞTaμi; ðA8Þ

and the relevant terms for the interaction are given by

Lint ¼ ghHðQÞ
b =Abaγ5H̄

ðQÞ
a i þ khTðQÞμ

b =AbaT̄
ðQÞ
b i þ h1

Λχ
hTðQÞμ

b ðDμ=AÞbaγ5H̄ðQÞ
a i

þ h2
Λχ

hTðQÞμ
b ð=DAμÞbaγ5H̄ðQÞ

a i þ ghH̄ðQ̄Þ
a =Aabγ5H

ðQ̄Þ
b i þ khT̄ðQ̄Þμ

a =AabT
ðQ̄Þ
b i

þ h1
Λχ

hT̄ðQ̄Þμ
a ð=AD⃖μÞabγ5HðQ̄Þ

b i þ h2
Λχ

hT̄ðQ̄Þμ
a ðAμ

⃖ =DÞabγ5HðQ̄Þ
b i þ H:c: ðA9Þ
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The relation between the decay width and the effective
coupling of a resonance Rwith total angular momentum JR
decaying into the two-body final state a in the narrow width
approximation is given by [66]

ΓR→a ¼
1

mR
ρaðm2

RÞ
�

1

2JR þ 1

�X
pol

jMR→aj2; ðA10Þ

where mR denotes the resonance mass, the phase space
factor is ρaðm2

RÞ ¼ 2paðmRÞ=ð16πmRÞ and pa denotes the
relative momentum of the decay particles in the rest frame
of the resonance,

paðmRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

R− ðma;1þma;2Þ2Þðm2
R − ðma;1 −ma;2Þ2Þ

q
ð2mRÞ

;

ðA11Þ

with ma;i for the masses of the particles in channel a. The
summation runs over the polarizations of the final and
initial state, respectively, if necessary. The pertinent matrix
elements can be read off the Lagrangian given in Eq. (A9)
straightforwardly allowing one to determine the couplings
from the experimentally measured decay widths.
The squared matrix element for the transition of

D�a → Dbϕab, summed over the D� polarizations, is
given by

X
pol

jMD�Dπj2 ¼
2g2c2abpπDðmD�Þ2

fπ2
mD�mD; ðA12Þ

where the coefficient cab can be read off from the
Goldstone boson matrix provided in Eq. (A7); cþ0 ¼ 1

and cþþ ¼ 1=
ffiffiffi
2

p
. Using Eq. (A10) we extract for

D�þ → D0πþ,

jgðD�þ → D0πþÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12fπ2πΓðD�þ → D0πþÞ

pπDðmD� Þ3
mD�þ

mD0

s

≈ 0.57; ðA13Þ

where the central values listed in the Review of Particle
Physics by the Particle Data Group [66] were used,

ΓðD�þ →D0πþÞ ¼ BRðD�þ →D0πþÞ · ΓD�þ
full

¼ 0.677 · 83.4 keV¼ 56.4 keV: ðA14Þ

Analogously from D�þ → Dþπ0 we find,

jgðD�þ → Dþπ0Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24fπ2πΓðD�þ → Dþπ0Þ

pπDðmD� Þ3
mD�þ

mDþ

s

≈ 0.57; ðA15Þ

with ΓðD�þ → Dþπ0Þ ¼ 25.6 keV. It is this value that we
use in our calculations in line with Ref. [80]. Since in this
work we do not aim at a calculation with controlled
uncertainties but more at demonstrating the consistency
of the existing data with just a single molecular state in the
mass range studied, we feel safe to not keep track with
the individual uncertainties of the parameters employed.
The interaction of the jPl ¼ 3

2
þ doublet fD2; D1g with

fD�; Dg and the Goldstone bosons Φ given in Eq. (A9)
can be reexpressed as

LTHπ ¼ −
h0ffiffiffi
2

p
fπ

hTðQÞμγνð∂μ∂νΦÞγ5H̄ðQÞi þ H:c:; ðA16Þ

where h0 ¼ ðh1 þ h2Þ=Λχ .
The decay of the narrowD1 intoD�π is predominately in

a D-wave, since the S-wave is suppressed by heavy-quark
spin symmetry, which calls for the conservation of the light
quark total angular momentum in the decay. However,
violations of this symmetry in the charm sector can be
sizable. To get an estimate for the S-wave strength in theD1

decay, we can use the fact that the spin partner of the D1,
the D2, can only decay into D�π and Dπ in a pure D-wave
due to the total angular momentum conservation [59].
Adding the partial widths, according to Eq. (A10), the total
width of the D2 is given by

ΓD2
¼ 1

5

ρπD�ðm2
D2
Þ

mD2

X
pol

jMD2→D�πj2

þ 1

5

ρπDðm2
D2
Þ

mD2

X
pol

jMD2→Dπj2; ðA17Þ

with

X
pol

jMD2→D�πj2 ¼
3

2

2h02

fπ2
pπD� ðmD2

Þ4mD2
mD� ;

X
pol

jMD2→Dπj2 ¼
3

2

4h02

3fπ2
pπDðmD2

Þ4mD2
mD; ðA18Þ

where the factor 3=2 in front of each term results from
adding the partial widths of theDð�Þþπ0 andDð�Þ0πþ in line
with what was done for the decay of the D�. Using ΓD2

¼
47.3 MeV [66], one can extract h0 ¼ 0.82 GeV−1. Our
calculation is not sensitive to the sign of this coupling
which we chose positive.
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Allowing for a D�πS-wave, the expression for the total
width of the D1 reads,

ΓD1
¼ 1

3

ρπD� ðm2
D1
Þ

mD1

X
pol

jMs−wave
D1→D�πj2

þ 1

3

ρπD�ðm2
D1
Þ

mD1

X
pol

jMd−wave
D1→D�πj2; ðA19Þ

From Eq. (A16) one finds,

X
pol

jMd−wave
D1→D�πj2 ¼

h02

fπ2
pD�πðmD1

Þ4mD1
mD� ; ðA20Þ

where again a factor 3=2 was included to account for the
two possible final states. With h0 fixed above, one finds
Γd-wave
D1

¼ 15 MeV, in agreement with Ref. [59]. Since the
total width of the D1ð2420Þ is 31 MeV [66], the remainder
must be generated by the S-wave decay. Using

Ls-wave
D1D�π ¼ i

h0sffiffiffi
6

p
fπ

ðD1b ·D
�†
a Þ∂0ϕba; ðA21Þ

one gets

X
pol

jMs−wave
D1→D�πj2 ¼

h02s ω2
π

6fπ2
3

2
mD1

mD� ; ðA22Þ

where ωπ denotes the energy of the pion and again the
factor 3=2 accounts for the two decay channels Dþ

1 →
D�0πþ and D�þπ0. This leads to h0s ¼ 0.57. Below we
study a pion angular distribution, which is sensitive to the
relative sign of h0 and h0s. We here already account for the
observation that the data call for equal signs of the two.
Photons couple via the field-strength tensor Fμν ¼

∂μAν − ∂νAμ, where Aμ denotes the photon field. In
this way gauge invariance is preserved automatically.
The production of a vector resonance from a photon is
thus described by

LVγ ¼
e

2fV
VμνFμν ≈

em2
V

fV
VμAμ; ðA23Þ

where Vμν ¼ ∂μVν − ∂νVμ and V denotes either the field for
the Yð4230Þ or the ψð4160Þ. The implications of heavy-
quark spin symmetry on charmonium production from
photons are discussed later in the chapter, but as the
production of the Yð4230Þ must go via the broad
D1ð2430Þ, thus we may allow for an additional phase in
case of a pointlike production. For the decay of Yð4230Þ →
Xð3872Þγ we can describe the E1 transition of D1 going to
D�γ with the following Lagrangian:

LTHγ ¼
ca
2
hTi

aH̄aiEi; ðA24Þ

where Ei denotes the electric component of the pho-
ton field.
We now come to the description of the ground state

doubly heavy vector fields of relevance to this study. Heavy
quark spin symmetry allows us to write QQ̄ superfields
[81]. The l ¼ 0 superfield RðQQ̄Þ contains the fJ=ψ ; ηcg
doublet,

RðQQ̄Þ ¼ 1þ =v
2

½J=ψμγμ − ηcγ5�
1 − =v
2

; ðA25Þ

where the interaction with D=D� is given by the
Lagrangian,

LHHR ¼ gHHR

2
hRðQQ̄ÞH̄2a=∂

↔
H̄1ai; ðA26Þ

with A∂μ
↔
B ¼ Að∂μBÞ − ð∂μAÞB. The resulting vertex fac-

tors are

VJ=ψDD ¼ gJ=ψDD̄ðϵJ=ψ · qÞ;
VJ=ψD�D ¼ gJ=ψD�D̄iϵijkϵ

i
J=ψϵ

j
D�qk;

VJ=ψD�D� ¼ −gJ=ψD�D̄� ½ðϵJ=ψ · ϵ2Þðϵ1 · qÞ
− ðϵJ=ψ ·qÞðϵ1 · ϵ2Þ þ ðϵJ=ψ · ϵ1Þðϵ2 · qÞ�; ðA27Þ

with q ¼ kðQÞ
1 − kðQ̄Þ

2 ¼ denoting the relative residual
momentum between the D mesons. At leading order the
masses of the multiples are degenerate mD� ¼ mD ¼ mH
and q simplifies to q ¼ p1 −mHv − p2 þmHv ¼ p1 − p2.
The coupling is traditionally parametrized as

gJ=ψAB ¼ mJ=ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mAmB

p
mDfJ=ψ

; ðA28Þ

which includes the leading spin-symmetry violating effects
via the mass factors. The l ¼ 1 superfield PðQQ̄Þ contains
the spin triplet χc0, χc1, χc2 and the singlet hc,

PðQQ̄Þμ ¼ 1þ =v
2

�
χμα2 γα þ

1ffiffiffi
s

p ϵμαβγvαγβχ1γ

þ 1ffiffiffi
3

p ðγμ − vμÞχ0 þ hμ1γ5

�
1 − =v
2

: ðA29Þ

Due to the Proca constraint, Pμvμ, the leading order
Lagrangian for the interaction of the l ¼ 1 spin-multiplet
with D and D� contains only a single term,

LHHP ¼ i
gHHP

2
hPðQQ̄ÞμH̄2aγμH̄1ai: ðA30Þ
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From this the vertex factors evaluate to

VhcD�D ¼ −2ghcðϵ�D� · ϵhcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhcmD�mD

p
;

VhcD�D� ¼ 2ighcϵαβτσpαϵβhcϵ
�τ
1 ϵ

�σ
2

ffiffiffiffiffiffiffiffi
m2

D�

mhc

s

¼ 2ighcϵijkϵihcϵ
�j
1 ϵ

�k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D�mhc

q
; ðA31Þ

where we fixed α ¼ 0 such that pα ≈mhc . The coupling is
parametrized as

ghc ¼ −
mχc0

3

1

fχc0
; ðA32Þ

where fJ=ψ ¼ 416 MeV was determined using vector-
meson dominance [54] and fχc0 ¼ 510� 40 from numeri-
cal results of QCD sum rules [82]. Those parameters carry a
systematic uncertainty which is difficult to quantify. In the
fits we allow fJ=ψ to vary within 10% of its value, while we
fix fχc0 to its central value, since our fit is not sensitive to
this quantity.

APPENDIX B: INCLUSION OF ππ − K̄K
FINAL-STATE INTERACTIONS

An amplitude M corresponding to the given isospin I
(the isospin index is omitted in what follows) can be
projected to a partial wave Ml with definite angular
momentum l,

MlðsÞ ¼ 1

2
ffiffiffi
2

p
α

Z
1

−1
dzMðs; zÞPlðzÞ; ðB1Þ

where Pl denotes the Legendre polynomial of degree l, z
the scattering angle and α ¼ 0, 1, 2 is a symmetry factor for
identical particles in initial and final states (e.g., α ¼ 2 for
AA → BB, α ¼ 1 for AA → CC; and α ¼ 0 for AB → AB).
The full amplitude can be reconstructed using the ortho-
gonality relation of the Legendre polynomials,

Mðs; zÞ ¼
ffiffiffi
2

p
α
X
l

ð2lþ 1ÞMlðsÞPlðzÞ: ðB2Þ

On the other hand, from the unitarity of the S-matrix the
discontinuity of the production amplitude Ml is given by

discMl
jðsÞ ¼ 2i

X
k

T�
jkðsÞσkðsÞMl

kðsÞ; ðB3Þ

where σk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

k=sÞ
q

Θðs − 4m2
kÞ and the subscript

indices j; k;…, refer to the coupled channels, which in our
case correspond to ππ and KK̄. Furthermore, Tjk corre-
sponds to the meson-meson coupled-channel amplitude.
The solution is given by Muskhelishvili Omnés function
encoding the ππ=KK̄ final-state interaction. Therefore, the
full amplitude is given by the sum of the amplitudes Mj

and Γ, involving the left-hand and right-hand (unitarity)
cuts only, respectively, which reads,

Mfull
j ðsÞ ¼ Mj þ Γj ¼ Mj þ

X
k

Ωjk

�
ðPn−1Þk þ

X
lm

sn

π

Z
dz
zn

Ω−1
kl ðzÞTlmðzÞσmðzÞM0

mðzÞ
z − s

�

¼ ½Ml>0
j þM0

j � þ
X
k

�
Ωjk

�
ðPn−1Þk þ

sn

π
P:V:

Z
½…�
�
þ iTjkσkM0

k

�
; ðB4Þ

where Pn−1 is a polynomial of the order n − 1, which is
discussed below, and Ω is the S-wave Omnés matrix.
The amplitudes Mj correspond to the diagrams discussed
in Secs. II B and II C, while the right-hand cut in Γ
emerges from the ππ=KK̄ FSI in an S-wave. The necessary
input for the amplitude T and the Omnés matrix is taken
from Refs. [83,84]. We now have a closer look at the
principal value integral. Using the shorthand notationP

kl Ω−1
jk TklσlMl ¼ fjðzÞ we get,

P:V:
Z

dz
zn

fkðzÞ
z − s

¼ P:V:
Z

dz

�
fkðzÞ
zn−1

−
fkðsÞ
sn−1

þ fkðsÞ
sn−1

�

×
1

zðz − sÞ

¼
Z

dz

�
fkðzÞ
zn−1

−
fkðsÞ
sn−1

�

þ fkðsÞ
sn−1

P:V:
Z

dz
1

zðz − sÞ :
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The integral in the last line can be evaluated analytically,

P:V:
Z

∞

sth

dz
1

zðz − sÞ ¼
1

s
ln

�
1

s=sth − 1

�
;

and that in the second needs to be done numerically.
However, in the exploratory study we aim at here, we
neglect this part which we expect to play a role of a
correction. The quality of the fits we achieve might be taken
as justification of this treatment a posteriori, although some
shift in importance of different contributions in a complete
analysis cannot be excluded. Thus, the modified ππ and
K̄K S-wave is given by

ðM0
jÞmod ¼ M0

j þ
X
k

ΩjkðPn−1Þk

þ
�
iTjkσk þ

1

π
ln

�
1

s=sth − 1

�
Tjkσk

�
M0

k;

ðB5Þ

such that the full amplitude (B4) is approximated as

Mjmod ¼ Ml>0
j þ ðM0

jÞmod: ðB6Þ

This also enables us to project the FSI onto the KK̄-
channel, allowing us to also determine Yð4230Þ →
J=ψππ → J=ψK̄K.
The subtraction polynomial ðPn−1Þj in Eqs. (B4) and

(B5) is matched to the Yð4230Þ → J=ψϕϕ chiral contact
term. In Ref. [85] it was found that both SU(3) singlet and
octet components of the light quarks contribute in the
Yð4230Þ, which can be decomposed as

jYð4230Þi ¼ ðc1jV light
1 i þ c8jV light

8 iÞ ⊗ jVheavyi; ðB7Þ

where

V light
1 ¼ 1ffiffiffi

3
p ðuūþ dd̄þ ss̄Þ;

V light
8 ¼ 1ffiffiffi

6
p ðuūþ dd̄ − 2ss̄Þ: ðB8Þ

The Lagrangian LYψϕϕ at leading order in chiral expan-
sion is given by [86]

LYψϕϕ ¼ g1hVα
1J

†
αihuμuμi þ h1hVα

1J
†
αihuμuνivμvν

þ g8hJ†αihVα
8uμu

μi þ h8hJ†αihVα
8uμuνivμvν þH:c:;

ðB9Þ

with J ¼ ðψ= ffiffiffi
3

p Þ1. The resulting S-wave projected chiral
contact terms relevant for the J=ψππ J=ψKK̄ final states
are given by

M0
ππ ¼ −

2

f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mYmJ=ψ

p �
g1 þ

g8ffiffiffi
2

p
�
ðs − 2m2

πÞ

þ
h1 þ h8ffiffi

2
p

2

�
sþ q2

�
1 −

σπ
3

��
;

M0
KK ¼ −

2

f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mYmJ=ψ

p �
g1 −

g8
2
ffiffiffi
2

p
�
ðs − 2m2

KÞ

þ
h1 −

h8
2
ffiffi
2

p

2

�
sþ q2

�
1 −

σK
3

��
; ðB10Þ

with q2 ¼ λ1=2ðm2
Y; m

2
J=ψ ; sÞ=ð2mYÞ, resulting in

½ΩPn−1�ππ ¼ Ω11M0
ππ þ

2ffiffiffi
3

p Ω12M0
KK;

½ΩPn−1�KK ¼ Ω21M0
ππ þ

2ffiffiffi
3

p Ω22M0
KK: ðB11Þ

To summarize, the amplitudes, incorporating the ππ=KK̄
FSI, used in our calculations, are provided by Eqs. (B5),
(B6), and (B11).

APPENDIX C: POLE UNCERTAINTY

Within our calculation the pole position is fixed by three
parameters [see Eq. (10)]; gY0, m0 and Γin, with m0 (Γin)
influencing only the real (imaginary) part of the pole
location and gY0 influencing both. To estimate the uncer-
tainty of the pole position we performed a χ2 fit, however,
with two approximations. First, we only allow the three
resonance parameters m0, gY0, and Γin to vary. Second, as
J=ψππ has the best statistics of all the available data and the
fit suggests a negligible contribution of the ψð4160Þ to this
channel, it is by far the most restrictive final state for the
Yð4230Þ pole location. Therefore, to estimate the uncer-
tainty of the Yð4230Þ pole location, we focus solely on the
J=ψππ channel. We checked that the inclusion of DD̄�π
yields no significant change to the uncertainty of the pole,
supporting that the main influence on the pole position is
driven by the data on the J=ψππ channel. In the analysis, we
allow m0 and Γin to vary within �10 MeV and gy0 by
�0.2 MeV around their best-fit values. These parameter
ranges allow the pole to vary over a sufficiently wide range,
including all values within the 1σ range around the best-fit
pole position. Within these ranges random combinations of
the three parameters are picked under the requirement that
for each parameter set the change in the χ2 value must lie
within,

χ2best fit − χ2random parameters ≤ Δχ2ðp; 3Þ; ðC1Þ

where the three in Δχ2ðp; 3Þ indicates that three parameters
are varied, and p ≈ 0.683 corresponds to the 1σ band. To
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evaluate Δχ2ðp; kÞ the χ2 cumulative distribution function
needs to equate p,

1

Γðk=2Þ γ
�
k
2
;
Δχ2

2

�
¼ p; ðC2Þ

where Γ and γ denote the regular and lower incomplete
Gamma functions, respectively,

γðx; aÞ ¼
Z

a

0

dt tx−1e−t; ℜðaÞ > 0: ðC3Þ

Solving for k ¼ 3 degrees of freedom, the 1σ deviation in
the χ2 value reads,

Δχ2ðp ¼ 1σ; k ¼ 3Þ ≈ 3.525:

The fits only included data from 4.2 GeV to 4.35 GeV
because this energy interval is expected to be under control
due to the theoretical mechanisms considered in this work.
As mentioned in the main text, deviations of our results
from the data beyond this energy range are expected due to,
in particular, the absence of contributions from the D1D̄�

and D2D̄� channels. The results for N ≈ 300 random
generated parameter sets that fulfill the condition of
Eq. (C1) are shown in Fig. 22. The upper panel shows
the obtained 1σ uncertainty band for the J=ψππ total cross
section, while the bottom plot shows the corresponding
spread of the pole position, which results in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sYð4230Þpole

q
¼
�
4227� 4 −

i
2
ð50þ8

−2Þ
�

MeV: ðC4Þ

In addition, the two plots in the middle of Fig. 22
demonstrate the effect of the 1σ uncertainty extracted from
fits to the J=ψππ channel on the total cross sections in the
DD̄�π and μþμ− channels. As pointed out earlier, the
variations in these channels are considerably less pro-
nounced compared to those in the J=ψππ channel.
Our error estimate in Eq. (C4) is supported by the

observation that the uncertainty we find using this method
is of the same order of magnitude as that provided by the
BESIII Collaboration extracted from the J=ψππ channel.

APPENDIX D: LOOP CALCULATION

1. Triangle

The triangle diagram shown in Fig. 23 only has one time
ordering and is given by

T D1DD� ¼
Z

d3l
ð2πÞ3

1

8ωDωD1
ωD�

1

E − ωD1
− ωD

1

E − ωπ − ωD� − ωD
; ðD1Þ

FIG. 23. Momentum assignment of the triangle loop.

FIG. 22. Uncertainty estimate of the Yð4230Þ pole position.
Upper three panels: total cross sections for J=ψπþπ−; D0D�−πþ,
and μþμ− final states with the 1σ uncertainty band extracted from
fits to the J=ψππ data and propagated to the other channels, as
described in the text. Red line in all plots corresponds to the best
global fit to all data considered in this study (see the main text for
details). Lower panel: the best pole position of the Yð4230Þ (red
dot) and the 1σ uncertainty (blue ellipse) extracted from fits to the
J=ψππ data.
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with

ωD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ l2
q

;

ωD� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ l2 þ p2
π − 2lpπz

q
;

ωD1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmD1

− iΓD1
=2Þ2 þ l2

q
;

ωπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
π

q
: ðD2Þ

In the center of mass frame of the Yð4230Þ one can
choose the momenta in a way that only the D� has an
angular dependence, where pπ ¼ pπð0; 0; 1ÞT, such that
z ¼ cos θ denotes the cosine of the polar angle of the loop
momentum l. Due to the width of the D1 only the last
propagator in Eq. (D1) has poles on the real axis, as in
comparison the D� width is negligible small. We define

fðE; lÞ ¼ l2

8ωDωD1

1

E − ωD1
− ωD

; ðD3Þ

such that f is regular in l. The integral can now be rewritten
as

T D1DD� ¼ 1

ð2πÞ2
Z

Λ

0

dlfðE; lÞ

×
Z

1

−1
dz

1

ωD�

1

E − ωπ − ωD� − ωD
; ðD4Þ

where the trivial integration over the loop momentums
azimuthal angle is performed. Doing a variable trans-
formation,

dωD� ¼ lpπ

ωD�
dz; ðD5Þ

the angular integration becomes

Z
1

−1
dωD�

1

pπl
1

E − ωπ − ω�
D − ωD

: ðD6Þ

The inverse factor of l is canceled by fðE; lÞ, while pπ is
canceled by the phase space integration.
With the relation

1

x − x0 � iϵ
¼ P

�
1

x − x0

�
∓ iπδðx − x0Þ; ðD7Þ

where P denotes the Cauchy principal value, Eq. (D6)
becomes,

1

E − ωπ − ωD� − ωD þ iϵ

¼ −P
�

1

ωD� − ðE − ωD − ωπÞ
�

− iπδðωD� − ðE − ωπ − ωDÞÞ: ðD8Þ

The δ function can be rewritten as

δðωD� − ðE − ωπ − ωDÞÞ ¼
ωD�

lpπ
δðz − z0Þ; ðD9Þ

with

z0 ¼ −
l2 þ p2

π þm2
D� − ðE − ωπ − ωDÞ2
2lpπ

: ðD10Þ

Now Eq. (D4) takes the form

I¼ 1

ð2πÞ2
Z

∞

0

dl
fðE;lÞ
lpπ

Z
1

−1
dz

�
−P
�

1

ωD� − ðE−ωπ −ωDÞ
�

− iπδðz−z0Þ
�
; ðD11Þ

with

P
�Z

ωD� ðz¼1Þ

ωD� ðz¼−1Þ
dωD�

1

ωD� − ðE − ωπ − ωDÞ
�

¼ log

����� E − ωD� jz¼1 − ωπ − ωD

E − ωD� jz¼−1 − ωπ − ωD

����
�
: ðD12Þ

Finally we arrive at

IðEÞ ¼
Z

Λ

0

dl
f̃ðE; lÞ
pπ

�
log

����� E − ωD� jz¼1 − ωπ − ωD

E − ωD� jz¼−1 − ωπ − ωD

����
�

þ iπΘ
�
E − ωD� jz¼1 − ωπ − ωD

E − ωD� jz¼−1 − ωπ − ωD

��
; ðD13Þ

where the remaining radial integration can be preformed
numerically. In case of the J=ψDð�ÞD̄ð�Þ vertex, which
scales with the loop-momentum itself, the integrand is
modified accordingly,

T ðC;NumÞ ¼ C
Z

d3l
2π3

Numðl; p1; p2Þ
8ω1ω2ω3

G1G2; ðD14Þ

with Num denoting the momentum factors in the numerator
and C being a constant.
To decrease the number of sample points needed to

achieve a stable result, it is useful to further split the l
integration at the poles of the propagator, as the distribution
of Gauss-Legendre sample points is more dense at the
integration borders,
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Z
Λ

0

dl ¼
Z

lP
0

0

Z
lP
1

lP
0

…

Z
Λ

lPn

dl; ðD15Þ

where the lPi correspond to the poles of the propagator in l,
which can be calculated analytically for each propagator.

2. Box

The Integral for the scalar box shown in Fig. 24 is
given by

I ¼
Z

d3l
ð2πÞ3

Numðl;p1; p2Þ
16ω1ω2ω3ω4

1

E−ω1 −ω2

×
1

E−ω5 −ω3 −ω2

1

E−ω4 −ω3 −ω5 −ω6

: ðD16Þ

In this work the second cut corresponds for most box
topologies to D̄D�π, which can go on shell. Analogous to
the triangle we isolate the singularity and define the
remaining part in a function fðE; l;φ; z; p1; p2Þ that is
regular in l and z. However, different to the triangle, it is not
possible to perform the integration of the polar angle
analytically as f is also dependent on z, such that we
perform a numerical subtraction,

I ¼
Z

d3l
ð2πÞ3 fðE; l;φ; z; p1; p2Þ

1

E − ω5 − ω3 − ω2

¼
Z

Λ

0

dl l2
Z

2π

0

dφ
�Z

1

−1
dz

fðE; l;φ; z; p1; p2Þ − fðE; l;φ; z0; p1; p2Þ
E − ω5 − ω3 − ω2

þ fðE; l;φ; z0; p1; p2Þ
Z

1

−1
dz

1

E − ω5 − ω3 − ω2

�
; ðD17Þ

where z0 is the pole of the propagator. The integration of
the second summand can now be done analytically,
resulting in Z

1

−1
dz

1

E − ω5 − ω3 − ω2

¼ log

� ðE − ω5 − ω3 − ω2Þjz¼1

ðE − ω5 − ω3 − ω2Þjz¼−1

�
: ðD18Þ

The remaining φ and l integration are performed numeri-
cally using Gauss-Legendre integration. Analogously to the

triangle the radial integration is split according to
Eq. (D15). The general notation used in this work is

BðC;NumÞ¼
X
T

C
Z

d3l
2π3

Numðl;p1;p2Þ
16ω1ω2ω3ω4

G1G2G3; ðD19Þ

where
P

T stands for the sum over the different time
orderings and Gi denotes the propagators for the different
cuts, e.g., G1 ¼ 1=ðE − wD1

− ωDÞ.
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