001     1027074
005     20250204113902.0
024 7 _ |a 10.1002/solr.202400225
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03627
|2 datacite_doi
024 7 _ |a WOS:001229155700001
|2 WOS
037 _ _ |a FZJ-2024-03627
082 _ _ |a 600
100 1 _ |a Seoneray, Isabel
|0 0000-0001-8437-7865
|b 0
245 _ _ |a Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cells
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721047284_11492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskite solar cells (PSCs) have become a research hotspot since their dramatic increase in power conversion efficiency (PCE), surpassing 26% due to advances in cell engineering and interfacial layers. Within the last factor, hole transporting materials play a crucial role in enhancing device performance and stability. Among several molecular building blocks, BODIPYs are attractive for the design of novel hole transporting material (HTMs) due to their outstanding photophysical and charge transport properties easily tuned by synthetic modifications. Herein, the synthesis of five new BODIPY-based HTMs PyBDP 1–5 are reported, functionalized at the meso- and α- positions with pyrenyl and arylamino units, respectively. The resulting compounds exhibit broad absorption in the visible region, remarkable thermal stability, narrow bandgaps, suitable energy levels, and good hole extraction capability, as subtracted from experimental and computational characterizations. The performance of the BODIPY derivatives as HTMs is evaluated in planar inverted (p-i-n) PSCs and compared to commonly used PTAA, resulting in highly efficient systems, reaching PCEs very close to that obtained with the reference polymer (21.51%). The incorporation of these BODIPY-based HTMs result in an outstanding PCE of 20.37% for devices including PyBDP-1 and 19.97% for devises containing PyBDP-3, thus demonstrating that BODIPY derivatives are a promising alternative to obtain simple and efficient organic HTMs.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 1
|u fzj
700 1 _ |a Rocha-Ortiz, Juan S.
|0 0000-0002-5022-9562
|b 2
700 1 _ |a Bornschlegl, Andreas J.
|0 0000-0001-9992-5449
|b 3
700 1 _ |a Barabash, Anastasia
|0 0000-0003-1732-1233
|b 4
700 1 _ |a Wang, Yunuo
|0 0000-0001-6832-8510
|b 5
700 1 _ |a Lüer, Larry
|0 0000-0001-9952-4207
|b 6
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 7
|u fzj
700 1 _ |a García, Angélica
|0 0000-0001-8570-1591
|b 8
700 1 _ |a Zapata-Rivera, Jhon
|0 0000-0001-8329-3571
|b 9
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 10
|e Corresponding author
700 1 _ |a Ortiz, Alejandro
|0 0000-0002-4392-9456
|b 11
|e Corresponding author
773 _ _ |a 10.1002/solr.202400225
|g p. 2400225
|0 PERI:(DE-600)2882014-9
|n 12
|p 2400225
|t Solar RRL
|v 8
|y 2024
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1027074/files/Manuscript.docx
|y Published on 2024-05-16. Available in OpenAccess from 2025-05-16.
909 C O |o oai:juser.fz-juelich.de:1027074
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 0000-0002-5022-9562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21