001     1027077
005     20240611202030.0
037 _ _ |a FZJ-2024-03629
100 1 _ |a Shabani, Doruntin
|0 P:(DE-Juel1)190948
|b 0
|u fzj
111 2 _ |a International Conference on Modern Trends in Activation Analysis
|g MTAA16
|c MERCURE BUDA CASTLE HILL BUDAPEST
|d 2024-05-05 - 2024-05-10
|w Hungary
245 _ _ |a Investigation of the 99Mo production via neutron capture 98Mo(n,γ)99Mo with a high-current accelerator-based neutron source
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1718108730_32044
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The demand for 99mTc, the most widely used radioisotope in medical imaging, is steadilyincreasing, with approximately 80% of all nuclear medicine procedures relying on it [1]. Theprecursor, 99Mo, is primarily produced through the fission of 235U in high neutron flux reactors[2]. This poses challenges in supply chain disruptions and radioactive waste management andas aging reactors face potential shutdowns, alternative production methods become crucial.This study explores an alternative approach to 99Mo production utilizing a high-currentaccelerator-based neutron source, as proposed in the ambitious HBS (Jülich High BrillianceSource) project [3]. The method involves the (n, γ) reaction with fast neutrons generated by70 MeV protons interacting with a tantalum target, moderated in water and reflected by lead.Numerical simulations, employing the PHITS code, investigate various target parametersand proton beam currents while limiting the target power density to 3 kW/cm2.Compared to traditional methods, this accelerator-based neutron source offers potentialadvantages, such as simplified processing schemes and reduced radioactive waste. The studyassesses the thermal and epithermal neutron flux, crucial for 99Mo activity, considering differenttarget and molybdenum plates' surfaces and thicknesses. Analytical methods, incorporatingcorrections for thermal and epithermal neutron self-shielding, complement the simulationresults.As current reactor-based 99Mo production faces challenges, especially in regions like Germanywith substantial demand [4], the pursuit of alternative, sustainable methods gains significance.The ongoing developments in accelerator-based technologies, exemplified by theHBS project, signify a promising avenue for securing the supply of critical medical isotopes,addressing both efficiency and waste management concerns. This work contributes valuableinsights into the feasibility and optimization of 99Mo production through accelerator-basedneutron sources, paving the way for future advancements in medical radioisotope productiontechnology.AcknowledgmentsThis work is supported by the German Federal Ministry of Education and Research (BMBF) underGrant No. 02NUK080B.References1. NEA (2019), “The Supply of Medical Radioisotopes: 2019 Medical Isotope Demand and CapacityProjection for the 2019–2024 Period”, OECD Publishing, Paris.2. Jaroszewicz J, Marcinkowska Z, Pytel K (2014) Production of fission product 99Mo using highenricheduranium plates in Polish nuclear research reactor MARIA: Technology and neutronicanalysis. Nukleonika 59(2):43–52.3. Brückel, T., & Gutberlet, T., et al. (2023), Technical Design Report HBS Volume 2 – Target stationsand moderators, Forschungszentrum Jülich GmbH4. Deutscher Bundestag, Drucksache 17/3142, 2010.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Langer, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mauerhofer, Eric
|0 P:(DE-Juel1)130382
|b 2
|u fzj
700 1 _ |a Gutberlet, Thomas
|0 P:(DE-Juel1)168124
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:1027077
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)168124
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21