001     1027078
005     20240611202030.0
037 _ _ |a FZJ-2024-03630
100 1 _ |a Mauerhofer, Eric
|0 P:(DE-Juel1)130382
|b 0
|u fzj
111 2 _ |a International Conference on Modern Trends in Activation Analysis
|g MTAA16
|c MERCURE BUDA CASTLE HILL BUDAPEST
|d 2024-05-05 - 2024-05-10
|w Hungary
245 _ _ |a Fast Neutron-induced Gamma-ray Spectrometry (FaNGaS)
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1718108747_30832
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Prompt Gamma Neutron Activation Analysis (PGNAA) based on cold or thermal neutron captureis a powerful technique for non-destructive elemental analysis of small and thin samples.However, due to limited penetration and attenuation effects, PGNAA is not suited for a preciseinvestigation of large objects. The feasibility of Prompt Gamma Analysis based on InelasticNeutron Scattering (PGAINS) to determine the elemental composition of large samples was alreadydemonstrated several decades ago [1]. The FaNGaS (Fast Neutron-induced Gamma-raySpectrometry) instrument, installed at Heinz Maier-Leibnitz Zentrum (MLZ) in 2014, advancesthis non-destructive analytical technique and makes it available for a broad community of industryand research [2-8]. Using the intense fission neutron beam delivered by the research reactorFRM II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz) to investigate fast-neutroninduced prompt gamma-ray emission, it offers new possibilities for the chemical analysis oflarge or small samples as a complementary method to conventional thermal- or cold-neutronbased PGNAA. The predominant reaction channel of fast neutrons at FaNGaS is the (n,n’γ)inelastic scattering reaction, currently with only one existing database: the “Atlas of Gammaraysfrom the Inelastic Scattering of Reactor Fast Neutrons”, published in 1978 by Demidov etal. [9]. This data compilation is valuable and a relational database has been recently developedbased on this Atlas [10]. However, it was yet never validated and previous measurements withFaNGaS show the need for a critical and meticulous validation [3-6,8]. Apart from building upa comprehensive catalogue of (n,n’γ) reactions another main objective is a continuous optimizationof the instrument to improve the analytical sensitivity.In this talk the experimental set-upand technical specifications of FaNGaS will be given. Relative intensities and partial gammarayproduction cross sections of fast-neutron-induced prompt gamma rays derived from themeasurement of various elements will be presented along with literature comparisons.References1. Schrader CD, Stinner RJ (1961). J Geophys Res 66:1951–1956.2. Randriamalala TH et al. (2016). Nucl Instrum Methods A 806:370–377.3. Ilic Z et al. (2020). J Radioanal Nucl Chem 325:641–645.4. Mauerhofer E et al. (2021). J Radioanal Nucl Chem 331:535–546.5. Mauerhofer E et al. (2022. J Radioanal Nucl Chem 331:3987–4000.6. Ophoven N et al. (2022). J Radioanal Nucl Chem 331:5729–5740.7. Bouat S et al. (2021). Nondestruct Test Evaluation 37:1–13.8. Ophoven N et al. (2023). J Radioanal Nucl Chem (under review)9. Demidov A et al. (1978). Atomizdat, Moscow10. Hurst AM et al. (2021). Nucl Instrum Meth A 995:165095
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Ophoven, Niklas
|0 P:(DE-Juel1)179117
|b 1
|u fzj
700 1 _ |a Ilic, Zeljko
|0 P:(DE-Juel1)172806
|b 2
700 1 _ |a Randriamalala, Tsitohaina H.
|0 P:(DE-Juel1)131296
|b 3
|u fzj
700 1 _ |a Vezhlev, Egor
|0 P:(DE-Juel1)164258
|b 4
|u fzj
700 1 _ |a Meleshenkovskii, Iaroslav
|0 P:(DE-Juel1)184505
|b 5
|u fzj
700 1 _ |a Stieghorst, Christian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Révay, Zsolt
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jolie, Jan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Strub, Erik
|0 P:(DE-HGF)0
|b 9
909 C O |o oai:juser.fz-juelich.de:1027078
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164258
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184505
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
920 1 _ |0 I:(DE-Juel1)JCNS-ESS-20170404
|k JCNS-ESS
|l JCNS-ESS
|x 4
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-ESS-20170404
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21