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A B S T R A C T

In this paper the three-dimensional extension of the Diffused Vortex Hydrodynamics (DVH)
is discussed along with free vorticity dynamics simulations. DVH is a vortex particle method
developed in-house and widely validated in a 2D framework. The DVH approach has been
embedded in a new frontend to the open-source code PEPC, the Pretty Efficient Parallel
Coulomb solver. Within this parallel Barnes–Hut tree code, a superposition of elementary heat
equation solutions in a cubic support is performed during the diffusion step. This redistribution
avoids excessive clustering or rarefaction of the vortex particles, providing robustness and
high accuracy of the method. An ascending vortex dipole at various resolutions is selected
as a test-case and heuristic convergence measurements are performed, taking into account the
conservation of prime integrals and the energy–enstrophy balance.

1. Introduction

In the Particle Vortex Methods (PVMs) the incompressible Navier–Stokes equations (NSEs) are solved in velocity–vorticity
formulation. It follows that the fluid domain can be discretized by means of vortex particles which are present in the rotational
region only. Therefore, the computational domain can be generally much smaller in comparison with other methods. Other relevant
advantages of PVMs are: (i) the pressure field is not a direct unknown of the problem; (ii) the vortex particles are advected in
the domain in a Lagrangian way, eliminating the numerical dissipation inherent to mesh-based approaches where the nonlinear
convective terms of the NSEs need to be discretized; (iii) the boundary conditions at infinity are automatically satisfied, avoiding
the need of large numerical domains (for more details see e.g. [13]).

In recent years, much of the interest on Lagrangian based approaches came from the growing interest in using parallel
supercomputers or graphical processing units (GPUs) for large computations [41,52,60,61]. Moreover, the advent of Fast Mulitpole
Methods (FMMs) optimized the computational costs and recent developments in numerical analysis allowed for the accurate
treatment of viscous effects. As also remarked in [1], PVMs are nowadays an interesting strategic alternative to classic mesh-based
methods (see e.g. [15,17,18,33,38]).

Historically, simulations with vortex methods date back to the thirties with hand calculations of the Kelvin–Helmholtz instabilities
by Rosenhead [45,46]. For several decades the grid-free character and the physical attributes of vortex methods were exploited in
the simulation of unsteady separated flows. Theoretical research on vortex methods provided a solid mathematical background for
the evaluation of the accuracy and of the stability of the method [35,36].
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Thanks to the pioneering works of Chorin [10,11], where the viscous splitting was introduced, the modern developments of
ortex methods officially started (using random-walk methods for viscous effects) together with the three-dimensional calculations
f Rehbach [43] and Leonard [36].

Motivated by the interest of applied mathematicians, first convergence analyses were carried out by Hald [29] and Beale and
ajda [4]. Later Long [37] gave some convergence proofs of random-walk methods in two dimensions, while Hou [31] and Hou

nd Lowengrub [32] found convergence proofs for point vortex methods. In addition to these fundamental studies, many efforts
ave been devoted to overcoming the main intrinsic difficulties, related to the treatment of boundary conditions and the distortion
f the particle distribution (see e.g. [34,53]).

A recent approach called Diffuse Vortex Hydrodynamics (DVH) is a vortex particle method in which the diffusion process is
odeled by superposition of simple solutions of the heat equation [22,48–50]. For each vortex particle the diffusion is carried out

ver a circular area of radius 𝑅𝑑 , called the ‘‘diffusive radius’’ which is a parameter of the simulation. The new particles correspond
o points of a uniform lattice that regularize the spatial distribution of the vortices.

Successfully tested and validated in a 2D framework [15,17–19,51], a convergence analysis was discussed in [50], where the
nalytical solution of Lamb–Oseen vortex [42] was considered. The convergence of the method was tested for different Reynolds
umbers and for several values of diffusive radius.

The use of particles leads to an 𝑁−body problem with intrinsic (𝑁2)−complexity. This can be overcome by using a fast
ultipole expansion [20], reducing the complexity to (𝑁 log𝑁). In order to simplify this expansion, a class of algebraic kernels
as introduced in [58]. Thanks to this approach, the three-dimensional parallel [3] open-source tree code PEPC, the Pretty Efficient
arallel Coulomb solver [25] was implemented. Based on the original Warren–Salmon ‘hashed oct-tree’ scheme [62] with a multipole
xpansion up to 𝑝 = 2, it was initially developed by Gibbon [23] for mesh-free modeling of nonlinear, complex plasma systems
24,26]. It was later extended to become a general purpose framework for (𝑁 log𝑁) tree code simulations through the development
f ad-hoc frontends. It can perform complex simulations with up to 109 particles routinely and has shown excellent scalability
roperties, e.g. with up to 294,912 cores on the IBM Blue Gene/P system JUGENE [65] and later with up to 1.8M threads on
58.752 cores of JUQUEEN [27], at the time both the largest systems at the Jülich Supercomputing Centre.

Adding to the previous vortex frontend [58], the PEPC-DVH frontend is a new development carried out in the last year and
s aimed at implementing some DVH key features inside the PEPC tree code [16]. In this paper a convergence analysis of this
ew algorithm is discussed and compared to the classic two-dimensional DVH. In addition, the effect of some parameters, like the
xtension of the diffusive radius, are investigated.

The paper is organized as follows: in Section 2 the mathematical background behind the DVH splitting scheme is summarized with
dvection step detailed in Section 2.2 and the diffusion step in Section 2.3; the criterion of synchronization of advection/diffusion
teps is indicated in Section 2.4; the conservation laws to be checked during numerical simulations are given in Section 3; finally,
he numerical 2D and 3D simulations are discussed in Section 4. Conclusions are offered in Section 5.

. Diffused vortex hydrodynamics

When the curl operator is applied to the Navier–Stokes momentum equation describing the flow field of a viscous fluid in a
omain 𝛺, the vorticity equation is obtained:

𝐷𝝎
𝐷𝑡

= (𝝎 ⋅ 𝛁) 𝒖 + 𝜈 ∇2𝝎 ∀𝒙 ∈ 𝛺 (1)

where 𝝎 ≡ 𝝎(𝒙, 𝑡) represents the vorticity field and is a function of time and position, 𝒖 ≡ 𝒖(𝒙, 𝑡) the velocity field and 𝜈 the fluid
kinematic viscosity. The first term on the right hand side describes the stretching or tilting of vorticity. This term represents one
of the mechanisms with which the energy of large eddies is transferred to smaller scales. In 2D this term is zero and the inverse
cascade moves energy away from small scales. The quantity 𝐷𝝎∕𝐷𝑡 represents the material derivative of the vorticity field and can
be explicitly expressed as:

𝐷𝝎
𝐷𝑡

= 𝜕𝝎
𝜕𝑡

+ (𝒖 ⋅ 𝛁) 𝝎

so the Eqs. (1) describe simultaneously both the advection and the diffusion of the vorticity field. The link between velocity and
vorticity is given by the Poisson equation:

∇2𝒖 = −𝛁 × 𝝎 . (2)

In order to solve it the velocity field can be decomposed according to the Helmholtz–Hodgetz decomposition theorem as [28]:

𝒖 = 𝒖𝜔 + 𝒖𝜑

where the first term at right hand side is a rotational (divergence free) component, whereas the second one is a potential (curl free)
component. The relation of these components with vorticity and potential fields is given by:

𝝎 = 𝛁 × 𝒖𝜔(𝒙, 𝑡) 𝛁𝜑 = 𝒖𝜑(𝒙, 𝑡) + 𝒖∞(𝑡)

where the term 𝒖∞ is related to the free-stream component.
In the present work, only free-vorticity test-cases are treated, hence, the term 𝒖𝜑 is neglected. We will refer generically to the
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used to enforced specific boundary conditions (see [22,34,48]). In unbounded space, the solution of the Poisson equation (2) is
given by the Biot–Savart law as:

𝒖𝜔(𝒙) = ∫R3
𝑑𝒚 𝑲(𝒙 − 𝒚) × 𝝎(𝒚) = 𝑲 ⊛ 𝝎 , 𝑲(𝒙) = − 𝒙

4𝜋|𝒙|3
, (3)

here 𝑲 is called Biot–Savart kernel in 3D (for more details see e.g. [39,44]).
According to the well known operator splitting scheme [8,22,40] advection and diffusion steps can be considered separately

uring the computational procedure:

⎧

⎪

⎨

⎪

⎩

𝐷𝝎
𝐷𝑡

= (𝝎 ⋅ 𝛁) 𝒖

𝐷𝒙
𝐷𝑡

= 𝒖
+

⎧

⎪

⎨

⎪

⎩

𝜕𝝎
𝜕𝑡

= 𝜈∇2𝝎

𝒖 = 𝟎

he approximate solution of the governing equation is thus obtained by sequences of Eulerian (inviscid) steps and purely diffusive
teps. The numerical solution scheme is based on a viscous vortex method originally discussed in [10,11], together with a deterministic
iffusion algorithm [7].

.1. Vorticity field discretization

As already clarified in [50], assuming the vorticity field as a measure, one can express it through the Lebesgue integral

𝝎(𝑓 ) = ∫ 𝑓 (𝒙) 𝝎{𝑑𝒙} (4)

here 𝑓 is a regular test function. By discretizing the vorticity field with 𝑁 point vortices, each one with vectorial circulation 𝜶𝑖
nd position 𝒙𝑖 one obtains:

𝝎(𝑓 ) =
𝑁
∑

𝑖=1
∫ 𝑓 (𝒙)𝜶𝑖 𝛿𝐱𝑖{𝑑𝐱} with ∫ 𝑓 (𝐱) 𝛿𝐱0{𝑑𝐱} = 𝑓 (𝐱0) (5)

ith 𝛿𝐱𝑖{𝑑𝐱} the three-dimensional Dirac delta measure.
Rather than using a singular distribution, regularized smoothing kernels may be preferable in order to transform point particles

nto ‘blobs’ of finite core size.

efinition 1. A function 𝜁 ∶ 𝛺 → R for 𝛺 = R𝑑 , 𝑑 = 2, 3 with 𝜁 ∈ 𝐶∞(𝛺) is called smoothing kernel if it satisfies the normalization
onstraint :

∫𝛺
𝜁 (𝑦) 𝑑𝑦 = 1

efinition 2. A function 𝜁𝜀 ∶ 𝛺 → R for 𝛺 = R𝑑 , 𝑑 = 2, 3 with

𝜁𝜀(𝑥) =
1
𝜀3

𝜁
(𝑥
𝜀

)

s called regularized smoothing kernel with core size 𝜀 > 0

Definition 3. A smoothing kernel 𝜁 = 𝜁𝑛 is of order 𝑛 ∈ N0 if the following moment conditions hold:

∫𝛺
𝜁 (𝑦) 𝑦𝛽 𝑑𝑦 = 0 for 0 < |𝛽| < 𝑛 − 1 with multi-index 𝛽

∫𝛺
|𝜁 (𝑦)| |𝑦|𝑛 𝑑𝑦 < ∞ .

Possible choices of the regularized smoothing function of order 𝑛 = 2 may be:

𝜁 (𝜌) = 15
8𝜋

1
(𝜌2 + 1)7∕2

𝜁 (𝜌) = 3
4𝜋

exp
(

−𝜌3
)

where the left one is an algebraic kernel [5], while the right one is a Gaussian kernel [30].
As remarked in [58], it is crucial to limit the computational costs related to the evaluation of these kernels. Algebraic kernels are

generally more convenient compared to Gaussian ones and, in this perspective, Speck [58] proposes a method for creating algebraic
kernels of arbitrary order. This approach allows fast numerical calculations by discretizing the vorticity and the velocity fields as:

𝝎𝜀(𝒙, 𝑡) =
𝑁
∑

𝑗=1
𝜶𝑗 (𝑡) 𝜁𝜀(𝒙 − 𝒙𝑗 ) 𝒖𝜀(𝒙, 𝑡) =

𝑁
∑

𝑗=1
𝑲𝜀(𝒙 − 𝒙𝑗 ) × 𝜶𝑗 (𝑡) (6)

where 𝑁 is the number of vortex particles and:

𝑲𝜀(𝒙) = − 𝒙
3

|𝒙|∕𝜀
𝑑𝑠 𝜁 (𝑠) 𝑠2 𝜶𝑗 (𝑡) = 𝑑𝒙 𝝎(𝒙, 𝑡) ∼ 𝝎(𝒙𝑗 (𝑡), 𝑡) 𝑗 (𝑡) (7)
530
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where 𝑗 (𝑡) is the volume associated to the 𝑗−th vortex particle and centered on 𝒙𝑗 (𝑡) (see e.g. [13]). As remarked in [64], although
the divergence of the velocity field 𝒖𝜀 is null, this is not true for the divergence of 𝝎𝜀:

𝛁 ⋅ 𝝎𝜀 =
𝑁
∑

𝑗=1
𝜶𝑗 (𝑡) ⋅ 𝛁(𝜁𝜀(𝒙 − 𝒙𝑗 )) ≠ 0

thus indicating that a superposition of non-solenoidal functions is used for representing a divergence-free field. Therefore, although
𝝎𝜀(𝒙, 0) is a good representation of 𝝎(𝒙, 0) at 𝑡 = 0 (i.e. a divergence-free field is initialized), this is not necessarily true for 𝑡 > 0.
However, as it will be discussed later, the zero-divergence of the vorticity field can be recovered after the diffusion step.

From a computational point of view, the adoption of the vorticity as the primary variable avoids the discretization of the
non-rotating regions, the computations being limited to the description of the vortical zones only.

2.2. Inviscid step

The inviscid evolution of the vortex particles is described by the Euler equation which requires the evaluation of the velocity
field 𝒖(𝒙, 𝑡) at every time step. This evaluation is performed numerically through the formula (6) which require an amount of (𝑁2)
operations for the direct calculation of 𝒖 at every vortex particle. A direct numerical implementation of this procedure is unfeasible
in practice because it would require large computational costs, thus severely limiting the number of vortex particles handled by the
algorithm. To overcome this issue, a multipole expansion approach [3] can be a convenient numerical strategy. This approach was
implemented in the parallel tree code PEPC allowing to reduce to (𝑁 log𝑁) the number of operations.

It is worth to underline that, although the convergence of the numerical method is not proved in the general viscous case, a
theorem of convergence for the inviscid case can be demonstrated and it is recalled in Appendix.

Substituting the expressions (6) in the vorticity transport equation, the advection step can be rearranged [64] as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝒙𝑗
𝑑𝑡

=
𝑁
∑

𝑖=1
[𝑲𝜀(𝒙𝑗 − 𝒙𝑖) × 𝜶𝑖] for 𝑗 = 1,… , 𝑁

𝑑𝜶𝑗

𝑑𝑡
= −

𝑁
∑

𝑖=1
𝛁𝑲𝜀(𝒙𝑗 − 𝒙𝑖) ⋅ (𝜶𝑗 × 𝜶𝑖) for 𝑗 = 1,… , 𝑁

(8)

where the first equation of system (8) defines the new vortex particles positions, whereas the second equation gives the corresponding
circulation update. In the 2D version of the same algorithm, the right hand side of second equation of system (8) is null. System
(8) is integrated in time by means of a 4th order Runge–Kutta scheme.

2.3. Diffusion

Viscous effects are accounted for in the diffusive step where the fluid velocity is neglected and the diffusion of the vorticity field
is evaluated through the heat equation:

𝜕𝝎
𝜕𝑡

= 𝜈∇2𝝎 (9)

where, differently from the advection step, 𝝎 is here represented as a superposition of exact solutions [6,7]:

𝝎(𝒙, 𝑡) =
𝜶0

√

(4𝜋𝜈𝛥𝑡)3
exp

(

−
|𝐱 − 𝐱0|2

4𝜈𝛥𝑡

)

(10)

related to a single point vortex at time 𝑡0 with initial circulation 𝜶0 and position 𝒙0 as initial datum. As remarked in [50], in two
dimensions the solution is the well known Lamb–Oseen vortex.

Similarly to Rossi et al. [49], through the diffusion the vorticity is redistributed on a Cartesian lattice, whose points become
the new set of vortex particles. Indeed, as clarified in e.g. [2,21], the Lagrangian vortex methods suffer of excessive clustering or
rarefaction of the vortex particles and a redistribution procedure is often needed to mitigate the problem. By means of the adopted
diffusion procedure this requirement is automatically fulfilled because a disordered set of vortex particles is replaced by an ordered
set at the end of the diffusive step.

Starting with all the circulation concentrated at time 𝑡0 on a single point vortex, for 𝑡0 + 𝛥𝑡 the distribution of vorticity should
cover all R3. This would result in a computationally impractical situation. Therefore, a radius 𝑅𝑑 , called diffusive radius, is defined
to make the support of (10) compact. According to this definition, it results:

⎧

⎪

⎨

⎪

⎩

𝝎(𝒙, 𝑡0 + 𝛥𝑡) =
𝜶0

√

(4𝜋𝜈𝛥𝑡)3
exp

(

−
|𝐱 − 𝐱0|2

4𝜈𝛥𝑡

)

if |𝐱 − 𝐱0| ≤ 𝑅𝑑

𝝎(𝐱, 𝑡0 + 𝛥𝑡) = 𝟎 otherwise
(11)

where 𝑅𝑑 is the radius of the truncated support. Similarly to what was remarked in [50] for a 2D approach, an error 𝜉 in the
conservation of the circulation is inevitably introduced:

𝜉 =
|

|

|

𝜶(𝑡0 + 𝛥𝑡) − 𝜶0 |
|

|

(12)
531
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where 𝜶(𝑡0 + 𝛥𝑡) is the circulation enclosed at time 𝑡0 + 𝛥𝑡 in a sphere of radius 𝑅𝑑 . A simple integration of (10) gives for 𝜶(𝑡) the
following expression:

𝜶(𝑡) = 𝜶0

[

erf

(

𝑅𝑑
√

4𝜈𝛥𝑡

)

−
2𝑅𝑑

√

4𝜋𝜈𝛥𝑡
exp

(

−
𝑅2
𝑑

4𝜈𝛥𝑡

)]

(13)

and by substituting this relation into (12) one obtains:

𝜉 = erfc

(

1
√

𝛽

)

+ 2
√

𝜋𝛽
exp

(

− 1
𝛽

)

with 𝛽 = 4𝜈𝛥𝑡
𝑅2
𝑑

(14)

which is a non-linear equation in 𝛽.
Similarly to what has been done in [48] for the 2D framework, we consider a trade-off between accuracy and computational

peed by accepting an error on 𝜉 = 10−5. Thus, by developing the expression (14) in Taylor series an approximate value for 𝛽 is
obtained:

𝛽 = 4𝜈𝛥𝑡
𝑅2
𝑑

≈ 0.077 (15)

which links the diffusive radius and the time step 𝛥𝑡.
As remarked in [48], diffusive and advective time steps are generally different so that it is preferable to distinguish them as 𝛥𝑡𝑑

and 𝛥𝑡𝑎. Using the expression (15), the following relations hold:

𝛥𝑡𝑑
𝑈
𝐿

=
(

𝑅𝑑∕𝛥𝑥
𝐿∕𝛥𝑥

)2 ( 𝛽
4

)

Re (16)

where 𝑈 and 𝐿 are the reference velocity and the reference length, respectively. The quantity 𝛥𝑥 is the spatial resolution of the
Cartesian lattice, while Re is the Reynolds number Re = 𝑈𝐿∕𝜈.

The relation (16) allows for the evaluation of the diffusive time step from:

• the adopted spatial resolution 𝐿∕𝛥𝑥
• the diffusive radius 𝑅𝑑
• the Reynolds number

once the error 𝜉 has been fixed (as mentioned above, 𝜉 = 10−5 is considered here).
As stated above, the vorticity field is lumped into point vortices located at the nodes of the lattice after the diffusion. However,

the use of a Cartesian lattice with a uniform spacing is not a real constraint for the DVH model, and the procedure can be generalized
on non uniform meshes (see e.g. [48]).

Call 𝒙𝑖 the position of a generic node 𝑖 of the lattice within a distance 𝑅𝑑 from a vortex 𝑗 in position 𝒚𝑗 with circulation 𝜶𝑗 .
uring the diffusive time step 𝛥𝑡𝑑 , the vortex 𝑗 gives a contribution 𝜶𝑖𝑗 to the circulation of 𝑖 equal to:

𝜶𝑖𝑗 =
𝜶𝑗

√

(4𝜋𝜈𝛥𝑡)3
exp

(

−
|𝒙𝑖 − 𝒚𝑗 |2

4𝜈𝛥𝑡

)

𝛥𝑥3 = 𝜶𝑗 𝑤𝑖𝑗 𝛥𝑥3 (17)

where the expression (10) has been used and 𝑤𝑖𝑗 is a bell-shaped function depending on the distance between 𝒙𝑖 and 𝒚𝑗 . In order to
enforce the conservation of the circulation of each vortex, the contribution 𝜶𝑖𝑗 is renormalized through a Shepard procedure [57]:

𝜶′
𝑖𝑗 = 𝜶𝑗

𝑤𝑖𝑗
∑

𝑖∈𝑗
𝑤𝑖𝑗

(18)

where 𝑗 is the set of lattice points falling in the sphere of radius 𝑅𝑑 centered on 𝒚𝑗 (see Fig. 1 for a sketch). Finally, the circulation
of the new vortex at node 𝒙𝑖 is expressed as:

𝜶𝑖 =
∑

𝑗∈𝑖

𝜶′
𝑖𝑗 (19)

where 𝑖 is the set of vortices falling in the sphere of radius 𝑅𝑑 centered on 𝒙𝑖. In order to limit the number of vortices generated
uring the diffusive process, the new particles with vorticity 𝜶𝑖∕𝑖 with module lower than a fixed cut-off, 𝜔𝑐𝑢𝑡, are removed,
imilarly to Winckelmans and Leonard [64], Speck [58] and Rossi et al. [50].

.4. Choice of the time steps

As outlined in Section 2.3, the advection and the diffusion of the point vortices are considered separately, so that two different
ime steps are taken into account: for advection 𝛥𝑡𝑎 and for diffusion 𝛥𝑡𝑑 . From formula (16) it is clear that the diffusion time step
𝑡𝑑 depends on Re and on the diffusive radius 𝑅𝑑 . The number of points inside the radius 𝑅𝑑 for a lattice characterized by a uniform
pacing 𝛥𝑥 is:

𝑁𝑛𝑜𝑑𝑒 =
⌊

4𝜋
(

𝑅𝑑
)3⌋

(20)
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Fig. 1. Sketch of the vorticity diffusion of a vortex particle 𝑗 onto a Cartesian lattice. The set of lattice points 𝑗 falling inside the sphere of radius 𝑅𝑑 , centered
on the particle 𝒚𝑗 , receive a circulation contribution 𝜶′

𝑖𝑗 from particle 𝑗.

being ⌊𝑥⌋ the largest integer not greater than 𝑥.
It is important to underline that 𝑁𝑛𝑜𝑑𝑒 (or equivalently the ratio 𝑅𝑑∕𝛥𝑥) together with 𝛥𝑥 are the key parameters of the DVH

model, because they fix the discretization level used in the particle method. A typical number for 𝑁𝑛𝑜𝑑𝑒 in 3D is 270 which
corresponds to a ratio 𝑅𝑑∕𝛥𝑥 equal to 4.

Conversely, the advection step 𝛥𝑡𝑎 is determined once the flow velocity 𝑈 and the discretization 𝛥𝑥 used during the diffusion step
are fixed. The time interval between two diffusive time steps should be short enough to avoid that the vortex particle distribution
becoming too irregular. The advection time step can be straightforwardly defined as:

𝛥𝑡𝑎 = Co 𝛥𝑥
𝑈

⇒ 𝛥𝑡𝑎
𝑈
𝐿

= Co 1
(𝐿∕𝛥𝑥)

(21)

where Co is the Courant number. As remarked in [13,50], the stability constraints on the Co number, typical of other numerical
methods, are less restrictive for vortex method schemes based on operator splitting, as the present DVH, even allowing Co > 1.
However, as underlined in [12], Co should never be too large to avoid a displacement of particles larger than the size of the
particles, which would lead to particle configurations that are too disordered.

Once 𝛥𝑡𝑎 is evaluated, it needs to be rearranged for synchronizing diffusion and advection, therefore, 𝛥𝑡𝑑 and 𝛥𝑡𝑎 need to be in
integer ratio, i.e.

𝑁𝛥𝑡 =
⌈

𝛥𝑡𝑑
𝛥𝑡𝑎

⌉

⇒ 𝛥𝑡𝑛𝑒𝑤𝑎 =
𝛥𝑡𝑑
𝑁𝛥𝑡

(22)

being ⌈𝑥⌉ the lowest integer greater than 𝑥. From the above expression it is clear that when 𝑁𝛥𝑡 = 1, the time steps 𝛥𝑡𝑎 and 𝛥𝑡𝑑 are
the same and a diffusive step is performed every advective step (this is a typical condition when simulating low Reynolds numbers
flow where 𝛥𝑡𝑑 becomes similar or even smaller than 𝛥𝑡𝑎).

Using the constraints on time-steps, the Eqs. (16), (21) and (22) can be rearranged and a relation between the 𝑁𝛥𝑡, the spatial
resolution 𝐿∕𝛥𝑥 and the Reynolds number can be obtained:

𝑁𝛥𝑡 =
[

𝛽
4
(𝑅𝑑∕𝛥𝑥)2

Co

]

Re𝛥𝑥 , Re𝛥𝑥 = Re
𝐿∕𝛥𝑥

(23)

where Re𝛥𝑥 is the so called Reynolds-cell number. By setting the ratio 𝑅𝑑∕𝛥𝑥 to a typical value of 4, 𝛽 = 0.077 and Co = 1, the
term in brackets is ≃ 3 (both in 2D and in 3D frameworks). Following the analysis performed in [50], in order to have an accurate
solution, the Reynolds-cell should be of order of one. From Eq. (23) it follows that when the value of 𝑁𝛥𝑡 is smaller than 3 the Re𝛥𝑥
is in the right range for studying properly the vortex dynamics. Furthermore, in [50] the authors show that when 𝑁𝛥𝑡 is lower than
10, the asymptotic range of convergence is always obtained.

3. Conservation laws

3.1. Continuous formulation

For three-dimensional unbounded inviscid flows, there are three linear invariants associated to the conservation of total vorticity,
linear and angular impulse [64]:

𝜴 = 𝑑𝒙 𝝎 = 𝟎 (24)
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T

[

a

𝑰 = ∫R3
𝑑𝒙 𝒖 = 1

2 ∫R3
𝑑𝒙 𝒙 × 𝝎 (25)

𝑨 = ∫R3
𝑑𝒙 𝒙 × 𝒖 = 1

3 ∫R3
𝑑𝒙 𝒙 × (𝒙 × 𝝎) (26)

that are conserved also for viscous flows. Using the Helmholtz decomposition introduced in Section 2, the velocity field is described
as:

𝒖 = 𝛁 × 𝝍

where 𝝍 is the 3D stream function. The kinetic energy is thus expressed as:

𝐸𝑘 = 1
2 ∫R3

𝑑𝒙 𝒖 ⋅ 𝒖 = 1
2 ∫R3

𝑑𝒙 (𝛁 × 𝝍) ⋅ (𝛁 × 𝝍)

= 1
2 ∫R3

𝑑𝒙 𝝍 ⋅ [−∇2𝝍 + 𝛁(𝛁 ⋅ 𝝍)]

= 1
2 ∫R3

𝑑𝒙 𝝍 ⋅ 𝝎 +
��������1
2 ∫R3

𝑑𝒙 𝝍 ⋅ 𝛁(𝛁 ⋅ 𝝍)

(27)

where the second term at right hand side is theoretically zero because 𝝍 is a solenoidal field. However, this is not true when the
description (6) is adopted, although it remains negligible as long as 𝝎 remains a good representation of the vorticity field. In the
viscous case the time derivative of the kinetic energy is related to the enstrophy [55]:

𝑑𝐸𝑘
𝑑𝑡

= −𝜈 ∫R3
𝑑𝒙 𝝎 ⋅ 𝝎 = −𝜈 E (28)

where E is the enstrophy function.

3.2. Discrete formulation

When a discrete description of the vorticity field is adopted, the relations (24)–(26) change accordingly:

𝜴 =
𝑁
∑

𝑖=1
𝜶𝑖(𝑡) 𝑰 = 1

2

𝑁
∑

𝑖=1
𝒙𝑖(𝑡) × 𝜶𝑖(𝑡) 𝑨 = 1

3

𝑁
∑

𝑖=1
𝒙𝑖(𝑡) × [𝒙𝑖(𝑡) × 𝜶𝑖(𝑡)] . (29)

he conservation of the total circulation is derived, considering the expression of 𝑑𝝎∕𝑑𝑡 during the advective step, as follows:

𝑑𝜴
𝑑𝑡

= −
𝑁
∑

𝑖,𝑗=1
𝛁𝑲𝑖𝑗 ⋅ (𝜶𝑖 × 𝜶𝑗 ) = 0 (30)

being 𝑲𝑖𝑗 = 𝑲(𝒙 − 𝒙𝑗 )|𝒙=𝒙𝑖 and considering that 𝛁𝑲𝑖𝑗 = 𝛁𝑲𝑗𝑖 (see [64]). For the linear impulse, the conservation is obtained from
the time derivative as:

𝑑𝑰
𝑑𝑡

= −
𝑁
∑

𝑖,𝑗=1
𝜶𝑖 × (𝑲𝑖𝑗 × 𝜶𝑗 ) (31)

which is small as long as 𝝎 remains a good representation of the vorticity field. The conservation of the angular impulse is typically
not considered in its discrete form in literature, because it is hard to rearrange. However, a possible short expression could be the
following one:

𝑑𝑨
𝑑𝑡

= 1
3

𝑁
∑

𝑖=1

𝑑
𝑑𝑡

[𝒙𝑖 × (𝒙𝑖 × 𝜶𝑖)] =
1
3

𝑁
∑

𝑖=1
[𝒖𝑖 × (𝒙𝑖 × 𝜶𝑖) − 𝒙𝑖 × (𝜶𝑖 × 𝒖𝑖)] (32)

where 𝒖𝑖 =
∑

𝑗 𝑲𝑖𝑗 × 𝜶𝑗 and the derivative of cross product between 𝒙𝑖 and 𝜶𝑖 is rearranged according Winckelmans and Leonard
64]. Similarly, the kinetic energy and the enstrophy have their discrete definitions as:

𝐸𝑘 = 1
8𝜋

𝑁
∑

𝑖,𝑗=1
𝑖≠𝑗

𝜶𝑖 ⋅ 𝜶𝑗

|𝒙𝑖 − 𝒙𝑗 |
(33)

E =
𝑁
∑

𝑖,𝑗=1
𝜶𝑖 ⋅ 𝜶𝑗 ∫R3

𝑑𝒙 𝛿(𝒙 − 𝒙𝑖) 𝛿(𝒙 − 𝒙𝑗 ) =
𝑁
∑

𝑖,𝑗=1
𝜶𝑖 ⋅ 𝜶𝑗 𝛿(𝒙𝑖 − 𝒙𝑗 ) =

𝑁
∑

𝑖=1
|𝜶𝑖|

2 (34)

nd the energy–enstrophy relation is obtained integrating in time Eq. (28):

1
8𝜋

𝑁
∑

𝑖,𝑗=1
𝑖≠𝑗

𝜶𝑖(𝑡) ⋅ 𝜶𝑗 (𝑡)
|𝒙𝑖(𝑡) − 𝒙𝑗 (𝑡)|

− 𝐸𝑘(𝑡0) + 𝜈
𝑁
∑

𝑖=1
∫

𝑡

𝑡0
𝑑𝑡′ |𝜶𝑖|

2(𝑡′) = 0 (35)

where 𝐸𝑘(𝑡0) is the initial kinetic energy of the particle system. It is worth clarifying that the last addendum of Eq. (35) is zero
during the advection step (see Section 2) and it varies only during the diffusion step. In the following, the conservation Eqs. (30)–
(32) are checked during time evolution, together with the energy–enstrophy relation (35). These equations are evaluated at different
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𝑅

It must be emphasized that, the final order of convergence of the overall numerical scheme is hard to assess theoretically because
any error sources combine in the final solution: i. the approximation of the Poisson equation (2) which depends on the spatial

resolution 𝛥𝑥 and the approximation linked to the FMM (see e.g. [47,58]); ii. the error related to the vorticity diffusion (9) which
depends on the 𝑅𝑑∕𝛥𝑥 ratio and on the 𝜉 parameter (12); iii. the error in the time integration of the particle advection and diffusion.
Moreover, the combination of these error sources are problem dependent as stressed in e.g. [50]. As a consequence, the convergence
of the scheme is proven only empirically in Section 4.2 on a well established benchmark test-case.

4. Numerical validation

4.1. Single vortex ring evolution

As remarked in [63], the behavior of vortex rings has been studied intensively and it is a good test case for checking the
capability of a numerical method Shankar and Dommelen [56]. The evolution of a vortex ring at intermediate Reynolds number is
a case initially discussed in [59], where it reproduces an old experiment of Didden [14]. During the experiments, vortex rings were
generated by impulsively forcing a column of fluid through a nozzle. The ring forms from the rolling-up of the vortex sheets created
by the boundary layer along the walls of the nozzle.

After an initial transient, the ring evolution is essentially driven by 𝛤∕𝜈 and 𝑎∕𝑅 where 𝛤 is the circulation associated to the
ring (i.e., the circulation of the ring section), 𝑅 the radius of the ring and 𝑎 the radius of the section of the ring, also known as the
core of the ring. In the core of the ring, where 𝑎 < 𝑅, the solution is locally two-dimensional and the streamlines are nearly circular.
With this assumptions the tangential velocity distribution is:

𝑢𝜏 = 𝛤
2𝜋𝑠

[

1 − exp
(

− 𝑠2

4𝜈𝑡

)]

here 𝑠 is the distance from the core center. The quantity 𝑎 is defined as the distance of maximum value of 𝑢𝜏 from the core center,
so that it can be found by solving 𝑑𝑢𝜏∕𝑑𝑠 = 0. The solution of the equation gives 𝑎 = 2

√

𝐾𝜈𝑡, so the ring core radius increase with
time because of the viscosity effect (the constant 𝐾 = 1.25644). The distribution of vorticity over the core is given by classic Gaussian
Oseen solution [42] and it becomes in this case:

𝜔 = 𝐾
𝜋

𝛤
𝑎2

exp
[

−𝐾
(

𝑅2 + 𝑟2

𝑎2
− 2𝑅𝑟

𝑎2
cos 𝜃

)]

(36)

where 𝑟 is the distance of a point of the ring 𝒙 from the ring center 𝒙0 (which coincides with the axes origin) and 𝑠 =
√

𝑅2 + 𝑟2 − 2𝑅𝑟 cos 𝜃, 𝜃 being the angle between the vector 𝒙 − 𝒙0 and the horizontal plane (z = 0 plane in Fig. 2). Initially, 𝛤 = 1,
= 1, the core radius is 𝑐 = 0.5𝑅 and 𝑎∕𝑅 = 0.35 with 𝑅𝑒𝛤 = 𝛤∕𝜈 = 500. The number of points along the core radius 𝑁 = 𝑅∕𝛥𝑥

will be the parameter used for indicating the spatial resolution adopted.

4.2. Numerical results

In order to perform a correct investigation of the convergence properties of the DVH scheme in the standard benchmark of 3D
vortex ring evolution, the 2D simplified problem is investigated at first. The effect of the diffusive radius, one of the most important
parameters used for the simulation, is considered at varying resolution. The 2D restriction allows the adoption of resolutions up
to 𝑁 = 128, which are rather demanding in a 3D framework. As initial condition in 2D, two circular vorticity distributions (with
centers 2𝑅 apart) are considered, corresponding to the transversal section of the ring, sketched in the top frame of Fig. 2.

The left frame resembles the condition indicated in literature [59,63] with the vortices initially distributed along concentric
circles. After a series of numerical tests we found that the diffusion of these vortices on a Cartesian lattice induces a significant error
after the first diffusion step, in particular on the energy–enstrophy Eq. (35). For this reason, we prefer to use an initial distribution
on the points of a Cartesian lattice, as sketched in the top-right frame of Fig. 2. The same Cartesian distribution is used for 2D
simulations as well.

As discussed in [59] and in [63] the dynamics of the ring is a simple rising movement along the central axis with diffusion,
summarized in the bottom frame of Fig. 2. The most evident effect of the diffusion is the widening of the inner core, as expected
from theory (see Section 4.1) and shown in Fig. 3 in 2D framework. Due to the fact that in 2D we are actually simulating two
disconnected circular vortex patches, the characteristic time of the rising motion is significantly different between 2D and 3D. At
𝑡𝛤∕𝑅2 = 50 the 3D ring is at about the same height of the 2D solution at time 𝑡𝛤∕𝑅2 = 100 so that a factor of about 2 on the
evolution time is found.

By considering that the rising time of the vortex ring depends on the value of the initial impulse component along the rising
direction (the other two are constantly null) 𝐼0, which is:

𝐼3𝐷0 = 𝜋 ∫

𝜋

0
𝑑𝜃 ∫

∞

0
𝑑𝑟 𝜔 𝑟 (𝑟 sin 𝜃)2 and 𝐼2𝐷0 = 2∫

𝜋

−𝜋
𝑑𝜃 ∫

∞

0
𝑑𝑟 𝜔 𝑟2 sin 𝜃

according to Stanaway [59] and Saffman [55]. It is worth to note that 𝐼3𝐷0 and 𝐼2𝐷0 are not dimensionally homogeneous, indeed, it
is found that a non-dimensional estimation is:

𝐼3𝐷0 ≈ 3.295 and
𝐼2𝐷0 ≈ 2 ⇒ 𝐼3𝐷 ≈ 1.65 𝐼2𝐷 𝑅
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Fig. 2. Top: vortex ring vorticity distribution over the ring core at 𝑁 = 32 (contour map is indicated at the top) as in [63] (left) and on Cartesian grid (right).
Bottom: 3D vortex ring configurations (and 𝑦−vorticity distribution) at 𝑡𝛤∕𝑅2 = 0 and 𝑡𝛤∕𝑅2 = 50. Only particles with vorticity module |𝜔𝑅2∕𝛤 | > 10−2 are
shown.

being 𝛤 = 1 and 𝑅 = 1, the 3D ring possesses a larger initial impulse than the 2D dipole and, for this reason, moves faster. The time
shift between 3D and 2D solutions is harder to estimate theoretically. In fact, if one considers the velocity of the ring centroid, as
defined in [55], it depends on the linear impulse and on the time distribution of the vortex particles . Moreover, the same definition
is not directly applicable in 2D [54]. As shown in [59], this velocity varies with time, making a direct determination of the time
shift between 3D and 2D solution not trivial and out of the scope of the present work.

The convergence of the 2D solutions for kinetic energy and enstrophy in 𝐿2 norm is shown in the top frame of Fig. 4 for
different 𝑅𝑑 . For the present study, four resolutions are considered: 𝑁 = 8, 𝑁 = 16, 𝑁 = 32 and 𝑁 = 128. The reported quantities
are calculated as:

Err𝑁+1
𝐸𝑘

=

[

1
𝑇 ∫

𝑇

𝑡0
𝑑𝑡 |

|

|

𝐸𝑁
𝑘 (𝑡) − 𝐸𝑁+1

𝑘 (𝑡) ||
|

2
]1∕2 / [

1
𝑇 ∫

𝑇

𝑡0
𝑑𝑡 𝐸𝑁𝑚𝑎𝑥

𝑘 (𝑡)

]

(37)

where 𝑡0 and 𝑇 are the initial and final simulation times, respectively, and 𝑁𝑚𝑎𝑥 refers to the maximum resolution used for the
simulations. The same estimation is used also for  . The convergence is shown for 𝑅𝑑∕𝛥𝑥 = 3, 4, 5, 6, while the case 𝑅𝑑∕𝛥𝑥 = 2 is
dumped. Energy and enstrophy are not convergent in the latter case and the inclusion of the corresponding errors would make the
plots difficult to read. As indicated below, we show the cases 𝑅𝑑∕𝛥𝑥 = 2 only on Energy–Enstrophy balance, where the divergence
of the solution can be appreciated.

The use of different points for the diffusive radius has no particular influence on the kinetic energy convergence, whereas
𝑅𝑑∕𝛥𝑥 = 3 does not lead to a good convergence rate for enstrophy (see top-right frame of Fig. 4). Adopting 𝑅𝑑∕𝛥𝑥 = 4, 5 seems
almost indifferent with respect to convergence properties, so that 𝑅𝑑∕𝛥𝑥 = 4 appears a good compromise between computational
costs and accuracy. Moreover, the slope corresponding to order 2 convergence is reported in both top frames of Fig. 4. The numerical
method exhibits a 2nd order convergence rate for both energy and enstrophy.

The energy–enstrophy relation (28) can be evaluated directly for every resolution and its convergence is analyzed through the
quantity:

Err𝑁𝐸𝑘|
=
⎡

⎢

⎢

1
𝑇 ∫

𝑇

𝑡
𝑑𝑡

(

𝐸𝑁
𝑘 (𝑡) − 𝐸𝑁

𝑘 (𝑡0) + 𝜈 ∫

𝑡

𝑡
𝑑𝑡′𝑁 (𝑡′)

)2
⎤

⎥

⎥

1∕2
/ [

1
𝑇 ∫

𝑇

𝑡
𝑑𝑡 𝐸𝑁𝑚𝑎𝑥

𝑘 (𝑡)

]

(38)
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Fig. 3. 2D vortex ring evolution at 𝑁 = 256 (contour map is indicated at the top of leftmost frame) and 𝑅𝑑 = 4. Ratio between diffusive and advective time
steps is 𝑁𝛥𝑡 = 1. Only particles with vorticity module |𝜔𝑅2∕𝛤 | > 10−3 are shown.

Fig. 4. Top: convergence of the 𝐿2 norm between two subsequent resolutions for Energy (left) and Enstrophy (right) in 2D simulations for different values
of 𝑅𝑑 and for resolutions up to 𝑁 = 128. Bottom: convergence of energy–enstrophy conservation according to formula (38) for different values of 𝑅𝑑 and for
resolutions up to 𝑁 = 128. Second order slope is also reported.
537



Mathematics and Computers in Simulation 225 (2024) 528–544D. Durante et al.
Fig. 5. Convergence of the linear impulse error Err𝐼 in 2D simulations for different values of 𝑅𝑑 and for resolutions up to 𝑁 = 128.

The convergence of quantity (38) is depicted in the bottom frame of Fig. 4 for 𝑅𝑑∕𝛥𝑥 = 2, 3, 4, 5, 6. As expected, the less points
are used in the diffusive radius, the larger is the error Err𝐸𝑘| ; in the limit case 𝑅𝑑∕𝛥𝑥 = 2 a divergent behavior is observed. Also
in this case, the scheme works very similarly for 𝑅𝑑∕𝛥𝑥 = 4, 5. Similarly to 𝐸𝑘 and  , also in this case a 2nd order convergence is
observed.

Regarding the conserved quantities, we observe that the angular impulse 𝑨 is identically null in 2D with open boundary
conditions, because of the asymptotic exponential decay of 𝜔. Also, the total vorticity is conserved at machine precision (10−12) in
2D simulations, while the error on linear impulse is shown in Fig. 5. The impulse should be constant during the simulation, so the
error at resolution 𝑁 is calculated as:

Err𝑁𝐼 = 1
𝑇 ∫

𝑇

𝑡0
𝑑𝑡

|𝑰𝑁 (𝑡) − 𝑰𝑎𝑛𝑎0 |

|𝑰𝑎𝑛𝑎0 |

where 𝑰𝑎𝑛𝑎0 is the analytical estimation of the linear impulse (constant in time).
A convergence trend is observed for 𝑅𝑑∕𝛥𝑥 = 3, 4, 5, 6 and for the highest resolution the influence of the diffusive radius becomes

evident. Again, similarly to Fig. 4, the larger the ratio 𝑅𝑑∕𝛥𝑥, the smaller the error.
The corresponding convergence analysis performed in 2D and summarized in Fig. 4 is carried out in 3D and shown in Fig. 6. In

3D, we limit our investigation to 𝑁 = 8, 16, 32, 64 (𝑁 = 128 being too demanding in terms of computational resources), and to
diffusive radii 𝑅𝑑∕𝛥𝑥 = 3, 4, 5. Similarly to the 2D case, for the lowest 𝑅𝑑∕𝛥𝑥 ratio a non-convergent behavior is observed. This
applies in particular for the kinetic energy, whereas for the enstrophy a convergence is observed for all values of 𝑅𝑑∕𝛥𝑥. The rate of
convergence is close to order 2 for both 𝐸𝑘 and  at 𝑅𝑑∕𝛥𝑥 = 4, 5. In the bottom frame of Fig. 6, the error on the energy–enstrophy
relation (38) is shown for the same resolution and at varying diffusive radius. Both 𝑅𝑑∕𝛥𝑥 = 4, 5 show good convergence rates as
in 2D. Although 𝑅𝑑∕𝛥𝑥 = 5 appears slightly better in terms of convergence properties, the choice 𝑅𝑑∕𝛥𝑥 = 4, already selected as
the best compromise in 2D, confirms to be valid also in 3D.

Differently from the 2D case, the total circulation 𝜴 in 3D is not exactly preserved for every resolution but a convergence rate
is observed in the left frame of Fig. 7 for different diffusive radii. The condition 𝑅𝑑 = 4𝛥𝑥 is the only one that manifests a strictly
monotonic convergence, whereas the condition 𝑅𝑑 = 3𝛥𝑥 does not exhibits a convergence when passing from 𝑁 = 16 to 𝑁 = 32.
Similarly, also for the linear impulse (middle frame of Fig. 7) the choice 𝑅𝑑∕𝛥𝑥 = 3 does not show a clear convergence, whereas it
is attained for 𝑅𝑑∕𝛥𝑥 = 4, 5. Finally, the right frame of Fig. 7 shows the convergence of the angular impulse 𝑨. This quantity is not
generally conserved by vortex methods: as stated in [64] it is conserved as long as 𝜔𝜀 is a good representation of a divergence-free
field. For all the investigated diffusive radii, the conservation seems attained and convergent, although not monotonically.

In general, we can conclude, from the present investigation that setting 𝑅𝑑 = 4𝛥𝑥 is a reasonable choice in terms of accuracy
and convergence properties both in 2D and in 3D and it is used for the simulations discussed in the following.

4.2.1. Discussion on differences between 2D and the 3D dynamics
The 3D ring evolution is shown in Fig. 8. The expected rising dynamics of the ring develops along with a decrease of the vorticity

intensity of the ring core. In Fig. 9 the 3D evolution is compared with the 2D one in terms of vorticity fields. For the 3D solution,
a section of the ring at 𝑦 = 0 is shown.

As mentioned above, for the same simulation time the solutions are different, so that a comparison is carried out at times where
the absolute vorticity maxima are the same vertical height. The 3D vorticity fields are in good agreement with the ones shown
in [59] and in [63], where the same contour levels of Fig. 9 were adopted. The 3D solution appears less diffusive than the 2D one
with a vorticity distribution generally more intense for the 3D case with respect to the corresponding 2D.
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Fig. 6. Top: convergence of the 𝐿2 norm between two subsequent resolutions for Energy (left) and Enstrophy (right) in 3D simulations for different values of 𝑅𝑑
and for resolutions up to 𝑁 = 64. Bottom: convergence of energy–enstrophy conservation according formula (38) for different values of 𝑅𝑑 and for resolutions
up to 𝑁 = 64. Second order slope is also reported.

Fig. 7. Convergence of circulation (left), linear impulse (middle) and angular impulse (right) errors in 3D simulations at different diffusive radii and for
resolution 𝑁 = 8, 16, 32, 64. The circulation and the angular impulse errors, having no reference values, are made non-dimensional with 𝛤 and with 𝛤𝑅2,
respectively.

The evaluation of the total circulation over the half-plane 𝑦 = 0, 𝑥 < 0 in 3D (over the half-plane 𝑥 < 0 in 2D), hereinafter
denoted as 𝛤 (𝑡), is reported in Fig. 10. This quantity is compared with the solution of Stanaway [59]. To this purpose, the time
is made non-dimensional through 𝑡 = 𝑡 𝜈2∕𝐼0 in 3D and as 𝑡 = 𝑡 𝜈2∕(𝑅𝐼0) in 2D. The initial time is shifted to 𝑡0 = 6.75 × 10−5 in
agreement with Stanaway [59]. The circulation is made non-dimensional with its initial value 𝛤 . A very good agreement between
the 3D solution and the reference one is achieved in terms of both slope and absolute values.
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Fig. 8. 3D vortex ring evolution at 𝑁 = 32 and 𝑅𝑑 = 4. Ratio between diffusive and advective time steps is 𝑁𝛥𝑡 = 2. Sections of the ring for 𝑦∕𝑅 < 0 are shown.
The reference non-dimensional time is indicated at bottom-right of each frame. Only particles with vorticity module |𝝎𝑦𝑅2∕𝛤 | > 1.5 ⋅ 10−2 are shown.

The 2D solution, as explained above, evolves in a different time range and, for the same time instants, is characterized by larger
values of the circulation than the 3D solution. This is due to the fact that the 3D ring is at a lower height than 2D dipole at same
time instants. Following the same approach of Fig. 9, a comparison can be made when the ring and the dipole are at nearly the same
height. For example, at 𝑡 = 11.38 (corresponding to 𝑡𝛤∕𝑅2 = 40) 𝛤 is about 0.94 for 3D, whereas it is about 0.92 in 2D for 𝑡 = 15.95
(𝑡𝛤∕𝑅2 = 92), so, as expected, at the same height the 2D solution possesses lower circulation than the 3D one (see corresponding
times in Fig. 9).

Finally, a comparison between 2D and 3D simulations in terms of energy and enstrophy time behaviors is depicted in Fig. 11 for
the maximum resolutions adopted (𝑁 = 64 for 3D, 𝑁 = 128 for 2D). The quantities are normalized with their initial values, while
the time is made non-dimensional with 𝛤∕𝑅2. As visible, although the enstrophy decreases very similarly in both cases, the ring
loses more energy in 3D than the dipole in 2D, when the same simulation time is considered. This reflects the behavior observed
for the circulation in Fig. 10. Note that the initial energy in 3D is more than the double of the corresponding 2D one.

The is worth mentioning that the 2D simulation at 𝑁 = 128 started with about 25,000 particles in the computational domain
and ended at 𝑡𝛤∕𝑅2 = 100 with about 650,000 particles. Conversely, the 3D simulation at 𝑁 = 64 started with 1.3 Million particles
and ended at 𝑡𝛤∕𝑅2 = 50 with about 90 Million particles. From these numbers it is clear that an efficient parallel code is essential
to perform 3D DVH simulations.

5. Conclusions

In the present paper, the PEPC-DVH 3D code is presented. The algorithm is a 3D extension of the DVH 2D code, a Vortex Particle
Method introduced in [50] and widely validated during the last decade. The current algorithm is a new frontend of the open-source
code PEPC, the Pretty Efficient Parallel Coulomb solver, which implements a highly portable, parallel Barnes–Hut tree code that was
originally designed for mesh-free modeling of nonlinear, complex plasma systems [24,26]. With the new DVH frontend [16], it is
used for a fast evaluation of the vortex particles’ velocities.

The diffusion algorithm is based, similarly to the 2D code, on the superposition of heat equation simple solutions. The diffusion
is carried out on a Cartesian lattice within a spherical area of radius 𝑅𝑑 , which is the diffusive radius and is a parameter of the
simulation.

In order to have stable simulations with the Chorin [9] fractional step method, diffusive and advective time steps must be
synchronized. A useful criterion to get such a synchronization is described in Section 2.4, where the number of advective time steps
before a diffusion step is defined. A general review of the conserved quantities has been given and some useful definitions in terms
of Lagrangian particles are offered in Section 3.

A comparison between the 2D and the 3D code for the classic rising vortex ring test case [59] is in-depth investigated in Section 4.
The 2D solution, defined as a vortex dipole corresponding to the 3D section of the ring, has been tested at increasing resolutions
and the effect of different 𝑅𝑑 is evaluated. The convergence of kinetic energy and of enstrophy time histories have been studied,
together with the conservation coming from the energy–enstrophy relation. A second order convergence has been observed and the
value 𝑅 = 4𝛥𝑥 was found to be the best compromise between computational costs and accuracy.
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Fig. 9. 3D vs. 2D vortex ring evolution (contour map is indicated at the top). The particles with vorticity module |𝜔𝑦𝑅2∕𝛤 | < 10−3 are blanked. The contour
lines are referred to levels 0.024 ≤ |𝜔𝑦𝑅2∕𝛤 | < 0.24 with dashed lines and 0.24 ≤ |𝜔𝑦𝑅2∕𝛤 | < 2.4 with solid lines. Each interval is subdivided into 5 contour
levels. The 3D solution is taken on the plane 𝑦 = 0.

Similarly, the 3D solution was investigated for increasing resolutions and 𝑅𝑑∕𝛥𝑥 = 3, 4, 5, confirming that 𝑅𝑑 = 4𝛥𝑥 is, even in
3D, an optimal choice for the diffusive radius. Convergence has been successfully verified for kinetic energy and enstrophy time
histories and for the different integral momenta of the vorticity (total circulation, linear and angular impulse). A comparison with
the solution by Stanaway [59] is carried out in terms of circulation evolution and a quite good agreement was found with the
3D DVH solution. This work represents a first milestone for this new algorithm and will be the basis for future developments and
applications.
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Fig. 10. Comparison of total circulation over a half-plane between 3D (black solid), 2D (blue solid) simulations and the solution of Stanaway [59] (dashed red).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Time histories of the kinetic energy (left) and enstrophy (right) for 2D and 3D simulations at maximum resolutions 𝑁 = 128 and 𝑁 = 64, respectively.
Kinetic energy and enstrophy are normalized with their initial values: 𝐸𝑘(𝑡0)∕(𝛤 2 𝑅) = 0.55 (3D), 0.26 (2D) ; (𝑡0)𝑅∕𝛤 2 = 9.96 (3D), 3.25 (2D).
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Appendix. Inviscid convergence

By considering 𝐿𝑝(𝛺), where 𝛺 ⊂ R𝑑 , as the Lebesgue space of locally p-integrable functions (1 ≤ 𝑝 < ∞), the Sobolev space
𝑊 𝑚,𝑝(𝛺) is the space of functions 𝑓 ∈ 𝐿𝑝(𝛺) for which the weak 𝛽−th derivative 𝐷𝛽𝑓 exists with 𝐷𝛽𝑓 ∈ 𝐿𝑝(𝛺) and |𝛽| < 𝑚 ∈ N0.

Theorem 1. Let 𝜁 be a smoothing function of order 𝑟 ≥ 2 with core size 𝜀 > 0 and

𝜁 ∈ 𝑊 𝑚,∞(R3) ∩𝑊 𝑚,1(R3) ∀𝑚 ∈ N

If the initial vorticity field 𝝎(𝒙, 0) is smooth enough and the initial particle spacing ℎ > 0 is sufficiently small, then there exists a time 𝑇 > 0
and a constant 𝐶(𝑇 ) > 0 for which:

‖(𝒖 − 𝒖𝜀)(𝒙, 𝑡)‖𝐿𝑝(R3) ≤ 𝐶𝜀𝑟 ∀𝑡 ∈ [0, 𝑇 ] , 𝑝 ∈ (3∕2,∞)

if ℎ ≤ 𝐵𝜀1+𝑠 for 𝑠, 𝐵 > 0.
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Proof. The proof of the theorem can be found in [13].
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