001     1027284
005     20250205221804.0
024 7 _ |a 10.1002/hbm.26751
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03726
|2 datacite_doi
024 7 _ |a 38864293
|2 pmid
024 7 _ |a WOS:001244785000001
|2 WOS
037 _ _ |a FZJ-2024-03726
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhang, Shufei
|0 P:(DE-Juel1)180326
|b 0
245 _ _ |a Impact of data processing varieties on DCM estimates of effective connectivity from task‐ fMRI
260 _ _ |a New York, NY
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738752109_31120
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Effective connectivity (EC) refers to directional or causal influences between interacting neuronal populations or brain regions and can be estimated from functional magnetic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrastto functional connectivity, the impact of data processing varieties on DCM estimatesof task-evoked EC has hardly ever been addressed. We therefore investigated howtask-evoked EC is affected by choices made for data processing. In particular, weconsidered the impact of global signal regression (GSR), block/event-related designof the general linear model (GLM) used for the first-level task-evoked fMRI analysis,type of activation contrast, and significance thresholding approach. Using DCM, weestimated individual and group-averaged task-evoked EC within a brain networkrelated to spatial conflict processing for all the parameters considered and comparedthe differences in task-evoked EC between any two data processing conditions viabetween-group parametric empirical Bayes (PEB) analysis and Bayesian data comparison (BDC). We observed strongly varying patterns of the group-averaged ECdepending on the data processing choices. In particular, task-evoked EC and parameter certainty were strongly impacted by GLM design and type of activation contrastas revealed by PEB and BDC, respectively, whereas they were little affected by GSRand the type of significance thresholding. The event-related GLM design appears tobe more sensitive to task-evoked modulations of EC, but provides model parameterswith lower certainty than the block-based design, while the latter is more sensitive tothe type of activation contrast than is the event-related design. Our results demonstrate that applying different reasonable data processing choices can substantiallyalter task-evoked EC as estimated by DCM. Such choices should be made with careand, whenever possible, varied across parallel analyses to evaluate their impact andidentify potential convergence for robust outcomes.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 1
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 2
700 1 _ |a Florin, Esther
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Popovych, Oleksandr V.
|0 P:(DE-Juel1)131880
|b 5
|e Corresponding author
773 _ _ |a 10.1002/hbm.26751
|g Vol. 45, no. 8, p. e26751
|0 PERI:(DE-600)1492703-2
|n 8
|p e26751
|t Human brain mapping
|v 45
|y 2024
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/1027284/files/Zhang2024_Hum-Brain-Mapp_45e26751_Impact-data-processing-on-DCM-estimates-of-EC-task-fMRI.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1027284/files/Zhang2024_Hum-Brain-Mapp_45e26751_Impact-data-processing-on-DCM-estimates-of-EC-task-fMRI.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1027284/files/Zhang2024_Hum-Brain-Mapp_45e26751_Impact-data-processing-on-DCM-estimates-of-EC-task-fMRI.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1027284/files/Zhang2024_Hum-Brain-Mapp_45e26751_Impact-data-processing-on-DCM-estimates-of-EC-task-fMRI.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1027284/files/Zhang2024_Hum-Brain-Mapp_45e26751_Impact-data-processing-on-DCM-estimates-of-EC-task-fMRI.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1027284
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21