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Abstract

Effective connectivity (EC) refers to directional or causal influences between interact-
ing neuronal populations or brain regions and can be estimated from functional mag-
netic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrast
to functional connectivity, the impact of data processing varieties on DCM estimates
of task-evoked EC has hardly ever been addressed. We therefore investigated how
task-evoked EC is affected by choices made for data processing. In particular, we
considered the impact of global signal regression (GSR), block/event-related design
of the general linear model (GLM) used for the first-level task-evoked fMRI analysis,
type of activation contrast, and significance thresholding approach. Using DCM, we
estimated individual and group-averaged task-evoked EC within a brain network
related to spatial conflict processing for all the parameters considered and compared
the differences in task-evoked EC between any two data processing conditions via
between-group parametric empirical Bayes (PEB) analysis and Bayesian data compar-
ison (BDC). We observed strongly varying patterns of the group-averaged EC
depending on the data processing choices. In particular, task-evoked EC and parame-
ter certainty were strongly impacted by GLM design and type of activation contrast
as revealed by PEB and BDC, respectively, whereas they were little affected by GSR
and the type of significance thresholding. The event-related GLM design appears to
be more sensitive to task-evoked modulations of EC, but provides model parameters
with lower certainty than the block-based design, while the latter is more sensitive to
the type of activation contrast than is the event-related design. Our results demon-
strate that applying different reasonable data processing choices can substantially
alter task-evoked EC as estimated by DCM. Such choices should be made with care
and, whenever possible, varied across parallel analyses to evaluate their impact and

identify potential convergence for robust outcomes.
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1 | INTRODUCTION

One of the main approaches to studying the human brain consists in
representing it as a collection of complex networks involving sets of
brain areas engaged in different functions and continuously sharing
information within and between the networks (van den Heuvel &
Hulshoff Pol, 2010). In the framework of functional connectivity (FC),
brain areas showing high temporal co-activations are defined as func-
tional networks during tasks or resting state (Menon, 2011). Both
task-evoked and resting-state FC of functional magnetic resonance
imaging (fMRI) have shown high similarities to each other as reported
by several papers (Beheshtian et al., 2021; Cole et al., 2014; Cole
et al., 2016; Heckner et al.,, 2021), see also a recent review (Bernstein-
Eliav & Tavor, 2024). Withal, the current FC studies frequently
focused on the resting state (Greene et al., 2018), which has widely
been used to investigate brain organization (Eickhoff et al., 2018; Yeo
et al., 2011) and brain-behavior relationships (Biswal et al., 2010;
Shen et al., 2017). However, the lack of external reference time points
(e.g., stimulus onsets) and the absence of control over mental pro-
cesses (Cole et al., 2016) as well as the typical FC calculation approach
(Pearson correlation) limit the application of resting-state FC to
dynamic interactions evoked by contextual modulation.

Task-evoked effective connectivity (EC) is supposed to estimate
the directional or causal information flow among network nodes mod-
ulated by task demands (Friston et al., 2003). For this purpose, the
dynamic causal modeling (DCM) approach was developed and is firmly
established in neuroimaging research (Frissle et al., 2017; Frassle
et al., 2018; Friston et al., 2014). Task-evoked EC estimated by DCM
was shown to reflect the interregional directional information flows
(Friston, 2011; Friston et al., 2003; Menon, 2011; Menon &
Uddin, 2010) and has been linked to human cognitive and executive
performance in tasks such as finger tapping, working memory,
response conflict resolution, reading, and so forth (Boudrias
et al., 2012; Cieslik et al., 2011; Jung et al., 2018; Kahan et al., 2019;
Loehrer et al., 2016; Morken et al., 2017; Volz et al., 2015).

Despite the success and relevance of DCM-based estimates of
EC, the impact of variations in data processing parameters on DCM
outcomes has not consistently been addressed. For task-evoked brain
activity, it has been demonstrated that the present analytical flexibility
in the field can have substantial effects on the reported results and,
thus, on the reproducibility of neuroimaging findings (Botvinik-Nezer
et al., 2020; Carp, 2012). Similarly, the influence of data processing
varieties has also been a topic of intense discussion in studies on FC
(Cole et al., 2010; Power et al., 2014; Power et al., 2017; Smith
et al., 2013). However, issues and challenges of analytical flexibility in
estimating task-evoked EC have rather been neglected so far and call
for further investigation. Here we therefore focus on four important
aspects of data processing in a typical DCM analysis.

The preprocessing of fMRI data concentrates on the cleaning of
the acquired data from noise, which is essential for an appropriate
extraction of the signals (Churchill et al., 2015). Typically, the cleaning
includes several steps such as slice-timing correction (Parker &
Razlighi, 2019; Sladky et al., 2011), motion correction (Friston

et al,, 1996; Yan et al., 2013), nuisance regression (Liu et al., 2017,
Power et al., 2017), temporal filtering (Davey et al., 2013), and spatial
smoothing (Friston et al., 2000). Of these, global signal regression
(GSR) has received much attention as a nuisance variable with a sub-
stantial impact on estimates of FC (Murphy & Fox, 2017) and will
therefore be examined for its influence on task-evoked EC in this
study. In particular, GSR has been thought to remove physiological
noise (Power et al., 2017) and help to detect significant FC (Fox
et al., 2009; Varikuti et al., 2017). However, the application of GSR is
controversial and may potentially distort activation and connectivity
measures in the network-specific ways (Anderson et al., 2011; Glasser
et al., 2018; Murphy et al., 2009; Saad et al., 2012). Furthermore, the
impact of GSR on resting-state FC was often assumed to be major
(Murphy & Fox, 2017), while GSR was recently shown to have only a
minor influence on resting-state EC estimations (Almgren et al., 2020).
As its impact on task-evoked EC has remained unclear, we investi-
gated it in the present study.

Another important methodological issue pertains to the question
of which design of the general linear model (GLM) is optimal for sub-
sequently analyzing task-evoked EC. According to presentations and
types of task stimuli, block- and event-related designs have been used
to model brain blood-oxygen-level-dependent (BOLD) signals to task
events by convoluting the temporal function of their occurrence with
the hemodynamic response function (HRF) (Buxton et al., 2004). The
block-based design aggregates multiple (similar) events into blocks to
maximize hemodynamic responses of engaged brain regions during
the same experimental conditions (Logothetis, 2008). The event-
related design models discrete events separately from each other and
analyzes brain responses to individual events independently (Huet-
tel, 2012). The choice of GLM design has not only been shown to
impact task-evoked activation and FC (Friston et al., 1999; Liu
et al., 2001), but also the model selection in DCM (Daunizeau
et al., 2011). However, the immediate impact of GLM design type
(block- vs. event-related) on task-evoked EC has not been explored
yet, which is why we addressed it in this study.

Besides the type of design, there are at least two more factors in
the analysis of task-fMRI data that may influence EC estimates
derived from DCM: significance thresholding of voxels at the level of
individual subjects and the choice of activation contrast of interest.
The selection of significance thresholding methods at the group level
impacted the data-analytical stability of fMRI results (Botvinik-Nezer
et al.,, 2020; Roels et al., 2015). However, the significance thresholding
at the individual level and its impact on task-evoked EC have not
appropriately been discussed yet. The activation contrast indicates
the brain activation driven by a specific task condition and reflects the
context-dependent task-evoked EC (Zeidman, Jafarian, Corbin,
et al., 2019). Previous studies have already demonstrated that DCM
estimated different task-evoked modulatory EC (M-EC) with selected
network nodes if various contrasts were specified as modulatory
inputs (Kuhnke et al, 2021; Ma et al, 2014). However, it is still
unknown how M-EC is statistically changed when different contrasts
are considered for time series extraction and used to define the mod-

ulatory inputs in DCM analyses.
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Based on these considerations, our study aimed to investigate the
impact of GSR, GLM design, significance thresholding, and activation
contrasts on task-evoked EC. The main objective was to illustrate how
important choices made during data processing can influence the
results of the task-evoked fMRI analysis and DCM estimations of
the task-based EC on an example of the stimulus-response compatibil-
ity (SRC) task (Fitts & Deininger, 1954). The workflow included several
steps: (1) preprocessing task-evoked images and reconstructing the
SRC network nodes with different conditions of data processing (GSR
and GLM designs); (2) extracting the respective BOLD time series from
the SRC network nodes for individual subjects under different condi-
tions with respect to GSR, GLM design, significance thresholding, and
activation contrasts; (3) calculating the individual and group-averaged
task-evoked EC patterns for each data processing condition; and
(4) evaluating between-group differences in task-evoked EC as well as
relative differences in EC parameter certainty between any two condi-
tions of the data processing (with vs. without GSR, event-
related vs. block-based designs, corrected vs. uncorrected thresholding,
and whole task vs. incompatible contrasts). We show that different
data processing choices result in substantially different task-evoked EC
at the group level, especially for the factors of GLM design and activa-
tion contrast. The obtained results could be of relevance for evaluating

analytical flexibility in task-evoked EC estimations.

2 | METHODS

21 | Participants and fMRI data
Our study included an initial sample of 271 subjects (148 males,
123 females, 18-85 years old, mean age: 52.3 + 16.6 years) recruited
from the subject pool of the 21000BRAINS project (Caspers
et al., 2014), which was conducted at the Research Centre Jilich.
Before MRI data collection, the written informed consent of each sub-
ject was acquired. The study protocol was approved by the health
care ethics committee of the University Duisburg-Essen (reference
number: 11-4678). The study was approved by the local ethics com-
mittee and performed in accordance with the declaration of Helsinki.
Details about fMRI data included in the 1000BRAINS project
can be found elsewhere (Caspers et al., 2014). In the present study,
only selected structural MRI (sMRI) and task-based fMRI (t-fMRI) data
were used for analyses. Both sMRI and fMRI datasets were acquired
on a 3-T Siemens scanner (Tim-TRIO, Siemens Medical System,
Erlangen, Germany). The sMRI scans were obtained using an anatomi-
cal 3D T1w MPRAGE sequence with the following parameters: repeti-
tion time (TR)=2.0s, echo time (TE) = 3.03 ms, flip angle = 9°,
176 sagittal slices, field of view =256 x 256 mm?, voxel resolu-
tion =1 x 1 x 1 mm?®. The t-fMRI dataset was scanned by gradient-
echo echo-planar imaging sequence with the following parameters:
TR =2.03s, TE = 30 ms, flip angle = 80°, field of view = 200 mm,
33 axial slices (ascending), slice thickness = 3.3 mm, inter-slice
gap = 0.66 mm, voxel resolution = 3.1 x 3.1 x 3.3 mm?, acquisition

time = 27 min, and 10 s.

2.2 | Experimental protocol

The present study followed the standard spatial SRC paradigm (Fitts &
Deininger, 1954). In particular, participants were required to respond
to lateralized visual stimuli by pressing an ipsilateral or contralateral
button as correctly and fast as possible (Figure 1). The whole experi-
ment had 24 blocks and consisted of incompatible (Anti) and compati-
ble (Pro) conditions. The Anti-condition required participants to react
to the lateralized stimulus by pressing the opposite button, while the
Pro-condition required participants to press the ipsilateral button.
Before one block started, a 2-s instruction was presented to indicate
the condition (incompatible or compatible) of the following block.
Each block contained 13 to 16 trials, in which filled circles (see Fig-
ure 1) were presented for 0.2 s either on the left or right side of the
screen with an equal probability (50%) to be on either side. The time
intervals between event onsets were uniformly jittered from 2 to
4.5 s. The rest periods between blocks were randomly jittered by a
uniform distribution ranging from 15 to 19 s. Either experimental con-
dition was covered in 12 blocks, which were presented in a pseudo-

randomized order with a stochastic paradigm.

2.3 | Preprocessing

The sMRI and fMRI images were preprocessed using functions from
FSL (Jenkinson et al., 2012), ANTSs (Tustison et al., 2014), Workbench
(Glasser et al., 2013), and AFNI (Cox, 1996) software packages.

The sMRI preprocessing included the following steps: (1) reorien-
tation and cropping (functions fslreorient2std and robustfov) (Glasser
et al,, 2013), (2) AC-PC alignment (flirt) (Glasser et al., 2013), (3) brain
extraction (antsBrainExtraction) (Esteban et al., 2019; Tustison
et al,, 2010), (4) tissue segmentation of gray matter (GM), cerebrospi-
nal fluid (CSF), and white matter (WM) (fast) (Zhang et al., 2001), and
(6) nonlinear spatial normalization (antsRegistration) (Avants
et al., 2008).

The fMRI module included the following steps: (1) removal of four

dummy volumes (fslroi); (2) two-pass head-motion correction, which

Compatible (Pro) condition = Incompatible (Anti) condition

+ +

¥ ¥
= =

FIGURE 1 Schematic illustration of the spatial stimulus-response
compatibility (SRC) task. A lateral stimulus on the screen (blue circle)
called for a button press either on the ipsilateral or contralateral side,
which is referred to as compatible (Pro) or incompatible (Anti)
experimental condition, respectively.
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initially realigned all time points to the first volume, and subsequently
to the averaged realigned volumes (mcflirt) (Jenkinson et al., 2002);
(3) intensity normalization (scaled to 10,000; fsimaths); (4) co-registra-
tion between the averaged functional volume and structural images
(antsRegistration) (Avants et al., 2008); (5) functional normalization
using the structural normalization matrix (antsApplyTransForms);
(6) spatial smoothing with an 8-mm full-width at half-maximum
Gaussian kernel (wb_command) (Glasser et al., 2013); (7) regression of
27 nuisance regressors comprising 24 motion parameters (Friston
et al., 1996) as well as the global signal of the whole brain, WM, and
CSF (fsl_glm), and 8) high-pass temporal filtering (cut-off at 128 s,
fslmaths) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). To study the impact
of GSR, we applied an alternative pipeline without GSR in step 7 and
regressed out only the other 26 regressors.

Our pipeline of data preprocessing mainly included specific func-
tions of FSL, AFNI, and ANTSs software, and selected functions were
recommended by previous literature (Carp, 2012) as well as tested on
the used dataset for high-quality data processing. Our choice of struc-
tural and functional preprocessing modules was based on recommen-
dations of HCP and fMRlIprep pipelines (Esteban et al., 2019; Glasser
et al., 2013), and applied a FEAT-based statistical approach of FSL for
extracting activation contrasts (Woolrich et al., 2004).

After a quality check of all preprocessing steps, 5 subjects were
excluded because of bad quality in the spatial normalization, and
266 subjects were included in the subsequent analyses.

2.4 | First-level fMRI statistics

To model brain activation in response to task conditions as reflected
by the dynamics of BOLD signals, we considered both event-related
and block-based designs of the GLM (Woolrich et al., 2004) (FSL/
film_gls). Our experimental protocol was designed in a way such that
the BOLD signal could be modeled at the level of individual trials or
blocks, and the experimental conditions of interest were modeled in
the GLM in three different ways (1) event-related model using all trials
(All-Trials), (2) event-related model using only “successful” trials (i.e.,
trials with correct responses; S-Trials), or (3) blocked design (Blocks).
Thus, both All-Trials and S-Trials cases represent event-related
designs, but the S-Trials design excluded the error trials, where sub-
jects gave incorrect responses to stimuli (i.e., wrong response laterali-
zation) or responded too fast or too slowly (reaction time,
RT <150 ms or RT > 1500 ms) or did not respond at all. The
trials were considered in the framework of a given activation contrast
of the investigated compatible/incompatible experimental conditions,
see below. The explanatory variables of the event-related GLM
included the on-off step functions starting at the onset time of each
trial with a fixed “on” duration of 0.2s of the stimulus length
(an example can be seen in Supplementary Figure S1). The block-
based GLM, in turn, used the starting time and full length of each of
the 24 experimental blocks as onset and duration times, respectively,
of the step function of the explanatory variables. The event-related
design had four regressors of interest comprising compatible and
incompatible conditions with right- and left-sided stimulus

presentation, respectively, while the block-based design had only two
regressors representing compatible and incompatible blocks of trials.

After task designs had been specified, the double-gamma HRF
and their temporal derivatives were modeled to estimate whole-brain
voxel-wise BOLD responses to the abovementioned task events
(Woolrich et al., 2004). We also included temporal derivatives of the
task regressors in the GLM design matrix to accommodate slight varia-
tions in the timing of the HRF across the brain and improve the fit of
the data (Woolrich et al., 2004).

After model estimation, we computed four task contrasts:
incompatible condition (Anti), compatible condition (Pro), incompatible
versus compatible condition (Anti > Pro) (subtracted contrasts, Anti -
Pro), and incompatible + compatible condition (Anti + Pro) (sum con-
trasts) in all GLMs (an example can be seen in supplementary
Figure S1). The Anti - Pro contrast aims to detect brain regions that
are more sensitive to the Anti-condition than to the Pro-condition,
whereas the Anti + Pro contrast aims to detect brain regions respond-
ing to either experimental condition.

2.5 | Second-level fMRI statistics

To reconstruct the brain network activated during the SRC task at the
group level, we calculated second-level fMRI statistics for our differ-
ent experimental designs using the FSL/randomize tool. The SRC para-
digm aims to elucidate brain activity related to solving response
conflicts arising from spatial incompatibility, which is why the Anti-
Pro contrast would be the most appropriate for network detection
that was activated stronger at the spatial incompatibility condition, as
compared to the other contrasts discussed. For reconstructing the
incompatibility-related brain network, the following steps were per-
formed during the second-level analysis of the fMRI data: (1) Contrast
maps (Anti > Pro) of individual subjects were merged into 4D images
for all subjects, and a one-sample permutation test (Winkler
et al., 2014) was conducted 10,000 times for All-Trials, S-Trials, and
Blocks designs separately. (2) Threshold-free cluster enhancement
(TFCE) with family-wise error (FWE) correction (Smith &
Nichols, 2009) was applied for dealing with the issue of multiple com-
parisons (precesrwe < 0.05). This resulted in several clusters of brain
voxels demonstrating significantly stronger responses during the Anti-
condition than during the Pro-condition (significant positive differ-
ences between Anti and Pro conditions) across subjects. The second-
level statistical maps are illustrated in Figure 2 for all three GLM
designs with GSR; the cases without GSR are illustrated in Supple-
mentary Figure S2.

2.6 | Task-evoked network and individual time
series extraction

After the second-level fMRI statistics were completed, the local max-
ima of the group-level Anti-Pro contrast map were identified using
the SPM 12 (v7219) package (http://www: fil.ion.ucl.ac.uk/spm/).
Consistent with previous literature (Cieslik et al, 2010; Langner
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(a) All-Trials

FIGURE 2 Results of the second-level functional magnetic resonance imaging (FMRI) analysis with different general linear model (GLM)
designs: (a) All-Trials, (b) S-Trials, and (c) Blocks designs (see text for details). All maps illustrate the t-values (scaling is given in the color bar) of the
t tests reflecting the statistically significant voxels across all subjects (prrcerwe < 0.05) of the contrast difference between incompatible and
compatible experimental conditions (Anti > Pro contrast). For visualization, each thresholded statistical map was projected to fs_LR 32k surfaces
(https://www.humanconnectome.org/software/connectome-workbench). Used notations: L/R, left/right hemisphere; All-/S-Trials, experimental
designs with all/successful trials; Blocks, experimental designs modeled by blocks; TFCE, threshold-free cluster enhancement; FWE, family-wise

error.

TABLE 1  MNI peak coordinates (x, y, z) of the local maxima of t-values based on the second-level fMRI statistics of the Anti-Pro contrast with

global signal regression.

All-Trials S-Trials Blocks

Peak X y z t X z t X y z t
LDLPFC -40 22 28 7.2 —44 22 30 7.0 —40 22 28 6.9
RDLPFC 36 30 28 6.7 36 30 28 6.7 36 26 24 59
LPMC —24 -8 48 16.3 —24 -8 48 16.6 —24 -8 48 15.2
RPMC 24 -8 48 111 24 -8 48 114 24 -6 48 10.3
LIPS —-34 —46 38 111 —-34 —46 38 11.0 —-34 —46 38 10.9
RIPS 36 —44 40 10.7 36 —44 40 111 36 —44 40 10.2
LAI -30 18 -10 12.1 -30 18 -10 11.0 -32 18 —10 11.6
RAI 30 20 —4 135 30 20 —4 13.0 30 20 —6 12.6
AMCC -2 8 46 10.4 —4 6 46 10.0 0 8 48 9.7

Note: Used notations: All-/S-Trials, experimental designs with all trials or only successful trials; Blocks, experimental designs modeled by blocks. Bold

values are statistically significant.

Abbreviations: Al, anterior insula; AMCC, anterior midcingulate cortex; DLPFC, dorsolateral prefrontal cortex; IPS, intraparietal sulcus; L/R, left/right; PMC,

premotor cortex.

et al., 2015), we detected 9 regions of the task-evoked brain network
as major constituents: anterior midcingulate cortex (AMCC), bilateral
intraparietal sulcus (IPS), premotor cortex (PMC), dorsolateral prefron-
tal cortex (DLPFC), and anterior insula (Al). These brain regions were
selected to reconstruct the SRC network for the Anti-Pro contrast.
The Montreal Neurological Institute (MNI) peak coordinates of the
second-level statistical maps and the corresponding t-values are given
in Table 1 for all three GLM designs after GSR. Examples of the
spheres (10-mm radius) encircled around the corresponding peaks and

representing the SRC network nodes (regions of interest [ROI]) are
illustrated in Figure 3a.

MNI peak coordinates without GSR can be seen in Supplemen-
tary Table S1.

After SRC networks were reconstructed for the considered condi-
tions of GLM designs and GSR, we focused on the extraction of BOLD
signals of the network nodes reflecting the task-evoked activity of
individual subjects. The steps performed for time series extraction
were the following:
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(a) The SRC network

FIGURE 3

Driving-input E===)

Driving-input E====)

(b) The full-connection model

R.AI

lllustration of the stimulus-response compatibility (SRC) network. (a) An example SRC network with nine nodes for the event-

related general linear model design, where the peak coordinates from Table 1 are encircled by spheres of a 10-mm radius. (b) The corresponding
full-connection model used in dynamic causal modeling (DCM), see text for the node abbreviations. LIPS and RIPS are the driving-input nodes
receiving external (visual) stimuli of the task, while all connections inside the SRC network are bidirectional. Used notations: L/R, left/right;
DLPFC, dorsolateral prefrontal cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.

1. The group-level SRC network nodes (group-level node ROls:
spheres of 10 mm radius centered at the peak coordinates from
Table 1, see Figure 3a) were overlaid with thresholded contrast
maps of individual subjects.

2. The local maxima and the corresponding voxel coordinates of the
individual contrasts were searched for in the intersection between
the group-level node ROIs and individual thresholded maps.

3. For each network node, the detected coordinates of the individual
local maxima were selected as centers of individual spheres with a
4-mm radius, and these spheres were then considered as network
nodes for individual subjects (subject-level node ROIs).

4. Within every subject-level node ROI, only voxels masked accord-
ing to the individual thresholded contrast maps (see step 1) were
considered, while the other voxels under the threshold
were excluded. Then, the first eigenvariate was extracted from the
BOLD signals of the masked significant voxels for every individual
network ROI by using FSL/fsimeants and considered as time series
of individual network nodes.

In step 1, we did not use the fixed network ROls as observed at
the group level but overlaid them with the thresholded contrast maps
of individual subjects to ensure that the voxels used to summarize
individual signals represented the task effects rather than irrelevant
noise processes. If there was no overlap between individual thre-
sholded contrast maps and the group-level network ROls, the respec-
tive subject was excluded from further analyses, as an empty
intersection would lead to incomplete network reconstruction and
BOLD extraction for individual subjects. As expected, the selected
kind of significance thresholding of individual contrast maps strongly
influenced the amount of overlap between individual activation clus-
ters and group-level SRC network nodes, with stricter thresholding
reducing the sample size available for subsequent DCM analyses.
Here, we applied two thresholding approaches to the considered con-
trasts for individual subjects with different levels of strictness: voxel-

wise thresholding with uncorrected p < .05 and cluster-wise corrected
p < .05 approaches, which we subsequently refer to as uncorrected
and corrected thresholding, respectively. For the latter approach, clus-
ter-level inference was used to define contiguous voxels of individual
thresholded maps by using FSL/cluster.

For the extraction of individual BOLD signals, four contrasts were
considered in this study as candidates for voxel masking: Anti, Pro,
Anti + Pro, and Anti - Pro. Since the current study was focused on
task-evoked EC within the brain network showing incompatibility
effects, we discarded the Pro contrast. Although we observed strong
group-based incompatibility effects as reflected by high t-values of
the second-level statistics of the Anti-Pro contrast (Table 1 and Fig-
ure 2), individual Anti - Pro contrast maps did not display such a clear
and pronounced activation (an example can be seen in Supplementary
Figure S1). We found that individual Anti - Pro contrasts yielded
rather sparse and weak activation maps after significance thresholding
such that many subjects did not qualify for further analyses as their
individual thresholded Anti - Pro contrast maps failed to overlap with
the group-level SRC network nodes. Aimed at the consideration of
relatively large samples, we then discarded the Anti - Pro contrast
from further analysis. Hence, we applied the thresholding schemes
mentioned above to individual Anti and Anti 4+ Pro contrast maps for
time series extraction for individual subjects (see Supplementary
Figure S1). Therefore, four kinds of thresholded contrast maps were
considered for individual time series extraction in this study: corrected
Anti, corrected Anti + Pro, uncorrected Anti, and uncorrected Anti
+ Pro. Summary information on the participant samples that were
included in subsequent analyses, after subject exclusions discussed
above, can be found in Table 2 for the different contrasts and GLM
designs with GSR (see Supplementary Table S2 for conditions with-
out GSR).

The considered conditions of the data processing can be summa-
rized as follows: (1) two GSR conditions, where the whole-brain global

signal was either regressed out or not (i.e.,, with or without GSR);
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TABLE 2 Sample sizes for different conditions of the data processing with GSR.

All-Trials S-Trials Blocks

Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Anti 149/148 210/208 136/136 207/203 160/158 213/205
Anti + Pro 164/164 215/212 149/148 206/201 173/171 216/210

Note: The two subject numbers given in each table cell correspond to the subject samples qualified for BOLD signal extraction for SRC network nodes of
individual subjects/explained variance (EV) criterion of DCM, see Sec. 2.6/Sec. 2.7 for details. Used notations: GSR, global signal regression; All-/S-Trials,
experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible

+ compatible contrast.

(2) three GLM designs (i.e., All-Trials, S-Trials, and Blocks); (3) two indi-
vidual first-level brain activation contrasts of Anti and Anti + Pro used
for BOLD signal extraction for SRC network nodes of individual sub-
jects; and (4) two thresholding approaches for the individual contrasts
based on either voxel-level uncorrected pyncorr < 0.05 or on cluster-
wise corrected peor < 0.05 thresholding. These conditions resulted in
2x 3 x2x2=24 cases of data processing investigated in this
study.

2.7 | Dynamic causal modeling

The present study evaluated task-evoked EC within the SRC network
via a two-level DCM analysis (Zeidman, Jafarian, Seghier, et al., 2019)
as implemented in SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/). The
DCM approach consists of approximating the neural mass dynamics z

(t) by the following system of differential equations:

dz

= (A+Y Btz cut)

where the matrices A and B stand for parameters of intrinsic and
task-modulated connectivity, respectively, and u(t) encodes the tim-
ing of the experimental condition k. Matrix C represents the influence
of all external experimental inputs (stimulation) u(t) on the neural
dynamics of the considered ROls.

At the first level, the DCM approach (Friston et al., 2003) was used
to estimate the network-based EC between the nodes of the SRC net-
works using the individual BOLD time series of the corresponding ROIs
of individual subjects. The standard DCM analysis involves several
parameters (Friston et al., 2003): (1) driving input that models external
(e.g., visual) input to the network and forces the activity of the network
nodes, and the input matrix C that defines the immediate influence of
the driving input on the selected network nodes; (2) intrinsic connec-
tivity (matrix A) that denotes task-independent baseline connections
among the nodes; and (3) modulatory connectivity (matrix B;) induced
by the experimental (task-dependent) condition decoded by variable u;
in the above equation and the respective cognitive processes. We also
note that the u-variables were not mean-centered in the model, which
allows us to interpret the A matrix as an intrinsic connectivity matrix,

whereas all modulatory effects on EC due to experimental conditions

are summarized in matrix B, as mentioned above (Zeidman, Jafarian,
Seghier, et al., 2019).

One may observe that GLM designs (event-related or block-
based) influence the activation contrast estimation and also the
formulation of driving and modulatory inputs in the DCM model spec-
ification. For a consistent formulation of the driving and modulatory
task-dependent inputs to DCM, we followed the same formulation
style throughout the GLM design, time series extraction for individual
subjects, and DCM analysis (Supplementary Figure S3). For example,
if the condition of the event-related design and Anti contrast were
considered for fMRI analysis and BOLD signal extraction, the driving
and modulatory stimuli of DCM would also be event-related, and the
task-evoked M-EC would be driven by Anti trials only.

For investigating the impact of data processing parameters on
task-evoked EC within the SRC network, a full-connection model was
considered to be a good candidate (Tuominen et al., 2023). In the SRC
network considered here, the IPS nodes were considered to act as
hubs of sensorimotor integration during visually guided actions
(Anderson et al., 2014), and the bilateral IPS nodes were thus selected
as the driving-input nodes receiving external (visual) input (Figure 3b).
To compare the impact of the data processing conditions introduced
above on the task-evoked EC, we considered 24 DCM cases for every
combination of data processing conditions mentioned above.

During the first-level DCM analysis, where EC was estimated for
individual subjects, we also evaluated the quality of the modeling and
calculated the fraction of variance of empirical BOLD signals that can
be explained by the variance of the simulated BOLD signals generated
by the optimized models (i.e., for optimized connectivity matrices
aimed at the best fit between empirical and simulated BOLD signals).
In line with the literature (Zeidman, Jafarian, Corbin, et al., 2019), we
applied a 10% threshold of the explained variance as a criterion for
our subjects to qualify for DCM analysis. As a result, up to nine sub-
jects had to be excluded from further analysis from those participants
already qualified for BOLD extraction from the SRC network nodes of
individual subjects, with the exact number depending on the selected
data processing condition (see Table 2 and Supplementary Table S2).

For the second-level DCM analysis, a parametric empirical Bayes
(PEB) framework (Zeidman, Jafarian, Seghier, et al., 2019) was used to
estimate the DCM parameters for group-level EC. The PEB model can
decompose the subject-wise variability of EC into group effects and
additive random effects (Friston et al., 2016). We adopted a two-step
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PEB scheme involving single-group and between-group analyses
(Zeidman, Jafarian, Seghier, et al., 2019). In the first step, we used the
single-group PEB analysis to investigate the group-mean EC (com-
monalities) for each processing condition. In the second step, we
applied the between-group PEB analysis to analyze the differences of
EC at the group level between the considered data processing condi-
tions (i.e., the EC differences resulted from the application of any two
different data processing conditions to the considered subject cohort).
For both single- and between-group PEB analyses, a 95% posterior
probability (PP > 95%) threshold was taken as a strong evidence
threshold rather than a statistical p-value (Zeidman, Jafarian, Seghier,
etal, 2019).

In parallel to PEB analyses, we also compared the relative differ-
ence in EC parameter certainty between any two processing condi-
tions using Bayesian data comparison (BDC) as implemented in
SPM12 v7771 (Zeidman, Kazan, Todd, et al., 2019). In contrast to
Bayesian model selection, BDC allows for a systematic comparison
between different datasets, such as those obtained from different
data processing approaches as in this study. BDC analysis helps to
make statistical inferences about the parameter certainty (reduction in
uncertainty) of coupling parameters estimated for a given data set
based on the relative entropy (Zeidman, Kazan, Todd, et al., 2019). A
difference in the entropy between two data sets in the range between
1.1 and 3 nats (natural units of information) and between 3 and 5 nats
can be considered as “positive evidence” and “strong evidence,”
respectively, that the estimated parameters are more certain for one
data set than for the other. A difference greater than 5 nats is indica-
tive of “very strong evidence” (Tuominen et al, 2023; Zeidman,
Kazan, Todd, et al., 2019). Based on this approach, we performed
BDC analyses between two considered conditions with common sub-
jects and extracted the relative differences in parameter certainty
between them.

In our study, we focused on the impact of data processing condi-
tions on the task-evoked M-EC (matrix B) within the SRC network.
Based on the single-group PEB analysis, we observed the group-mean
task-evoked M-EC for all conditions and identified varied EC patterns
corresponding to different selections of data processing parameters.
A systematic comparison was then performed directly between data

processing conditions via between-group PEB analysis.

3 | RESULTS

In this study, we investigated the task-evoked M-EC (matrix B)
depending on the condition of the data processing parameters (see
Section 2). We considered 24 data processing conditions involving
two GSR conditions, three GLM designs, two activation contrasts, and
two significance thresholding methods. We investigated the impact of
these conditions on the SRC network localization, analysis sample
size, DCM model fits, task-evoked M-EC of matrix B, and its certainty
as we illustrate below. Briefly, we observed that (1) variation of the
data processing parameters resulted in varied group-mean EC pat-
terns; (2) the GLM designs and activation contrasts largely influence

EC strength and parameter certainty; and (3) GSR and significance
thresholding have a rather little impact on EC.

3.1 | Task-evoked network localization

Based on the second-level fMRI analysis, the brain activation maps
were obtained at the group level (Figure 2 and Supplementary
Figure S2), and the peak coordinates of the SRC network nodes were
determined (Table 1 and Supplementary Table S1). The data proces-
sing conditions of GLM design (All-Trials, S-Trials, and Blocks) and
GSR (with/without) are relevant at this stage, and the remaining con-
ditions of the activation contrast and significance thresholding will be
applicable later at the time series extraction for the network nodes of
individual subjects. When applying GSR, the results of the second-
level fMRI analysis were very similar across the three GLM designs
with very high volumetric overlap as indicated by a large Dice coeffi-
cient D (Taha & Hanbury, 2015) (Supplementary Table S3). In particu-
lar, the overlap in the brain activation between the All-Trials and
Blocks cases was comparable with the overlap between All-Trials
and S-Trials, with D = 0.94, respectively. We did, however, detect
small differences in peak coordinates between GLM design types for
the L.DLPFC, R.DLPFC, R.PMC, L.Al, R.Al, and AMCC nodes (between
the All-/S-Trials and Blocks) and the L.DLPFC and AMCC nodes
(between All-Trials and S-Trials). The factor GSR (i.e., with/without
GSR) also showed a weak influence on the peak coordinates of the
SRC network nodes: variations were observed in the R.PMC and R.Al
nodes in Blocks, R.PMC, L.Al, and AMCC nodes in All-Trials, and L.
DLPFC, L.Al, and AMCC nodes in S-Trials (compare Table 1 and Sup-
plementary Table S1).

3.2 | Analysis samples

Next, we examined the effects of processing conditions on the sample
size of subjects available for subsequent DCM analysis. Different sub-
ject samples were qualified for individual time series extraction under
different conditions of data processing. The type of significance
thresholding (see Section 2) was found to be most relevant at this
stage, as compared to the other three processing parameters consid-
ered. The sizes of the qualified subject samples are listed in Table 2
(left-side numbers in the table cells), where the large impact of the sig-
nificance thresholding can be seen. In many cases, the cluster-cor-
rected thresholding entailed excluding 50 more subjects than the
uncorrected thresholding, which corresponded to more than 25% of
the relative sample reduction. The choice of contrast (i.e., Anti
vs. Anti + Pro) only slightly influenced the sample size in the range of
15 subjects. The factor of GLM design also weakly influenced the
sample size of the qualified (or excluded) subjects, although the rela-
tive difference here reached up to 15% when comparing Blocks and
S-Trials designs (Table 2). The Blocks design entailed the largest sam-
ple qualified for time series extraction and subsequent DCM analyses,

whereas the S-Trials design led to the smallest sample eligible for
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further analyses. We replicated the above findings for the case with-
out GSR (Supplementary Table S2).

3.3 | DCM model fits

The goodness-of-fit of DCM can be evaluated by the fraction of vari-
ance of empirical BOLD signals that can be explained by the variance
of the simulated BOLD signals generated by the model. Therefore, we
calculated the fractions of the explained variance for all subjects quali-
fied for BOLD signal extraction. We found that the DCM-simulated
BOLD signals can on average account for about 25% of the empirical
variance (Supplementary Table S4). Only a few subjects (0-8) fell
below 10% (Table 2). Varying the GSR condition (for other fixed con-
ditions) also weakly affected the sample size with the differences in
the range of nine subjects (Supplementary Table S2). Here, the differ-
ences between conditions were found to be statistically insignificant
after multiple-comparison corrections, and the modeling performed
well for all conditions and most subjects.

3.4 | Group-mean EC estimation
We estimated the averaged task-evoked EC for considered data pro-
cessing conditions (24 conditions) at the group level using the single-
group PEB analysis. We found that selecting one or another setup of
the data processing influenced the results of DCM calculations and
led to different group-mean task-evoked EC values. We first illustrate
this by counting the numbers of evident edges (PP > 95%, see Sec-
tion 2) of task-evoked EC without counting self-connections (Table 3).
The edge number (PP > 95%) of the task-evoked M-EC (matrix B) was
discovered to be varied depending on the selected approach of data
processing. For example, the number of evident edges within the SRC
network (in matrix B) may range from 42 (S-Trials, uncorrected Anti
+ Pro) to 13 (Blocks, corrected Anti), which corresponds to a variation
of the fraction of edges of the task-evoked M-EC of the SRC network
from 58% to 18%, respectively (Table 3 and Figure 4).

The choice of GLM design resulted in very different task-evoked
EC patterns, where the task-evoked M-EC of the Blocks-design is
much sparser than those of All-Trials and S-Trials designs (Figure 4

and Supplementary Figure S4). The uncorrected significance

thresholding led to a denser task-evoked EC compared with the cor-
rected condition for the Anti activation contrast. The Anti + Pro con-
trast resulted in more evident edges of the task-evoked EC than the
Anti contrast did, except for the uncorrected All-Trials-condition.
Without GSR application, small differences in task-evoked EC were
observed as compared to the case when GSR was applied (Figure 4,
Table 3, Supplementary Figure S4, and Supplementary Table S5). Nev-
ertheless, we corroborated the above conclusions also for the case
without GSR.

3.5 | Between-group differences in task-
evoked EC

To evaluate the differences in the task-evoked M-EC (matrix B)
between varied conditions of a given data processing parameter (i.e.,
All-Trials vs. Blocks; with-GSR vs. without-GSR; corrected
vs. uncorrected thresholding; Anti + Pro vs. Anti contrast), a
between-group PEB analysis (see Section 2) was applied. We found
that the considered data processing conditions of the GLM design and
activation contrast led to strongly different task-evoked EC values
(Figures 5 and 6, and Supplementary Figures S5 and Sé), while EC was
little affected by GSR application and thresholding approach (Supple-
mentary Figures S7 and S8). Moreover, some M-EC edges were dis-
covered to be consistently present when combining group-mean PEB
and between-group PEB analyses (Supplementary Figure S9). For
example, four edges were observed to be stable between conditions
of All-Trials and Block GLM designs, while 10 EC edges were found to

be stable between conditions of Anti + Pro and Anti contrasts.

3.6 | Differences between block- and event-
related GLM designs

We observed strongly different patterns of the task-evoked M-EC
(matrix B) between event-related (All-Trials and S-Trials) and block-
based GLM (Figure 5 for All-Trials vs. Blocks, Supplementary
Figure S5 for S-Trials vs. Blocks). All-Trials design showed stronger
positive modulation of the connections from the network nodes (L.IPS
and R.IPS) receiving external (visual) driving inputs to the rest of the

network. At the same time, these driving-input nodes received

TABLE 3 Numbers of the group-level evident edges showing a high posterior probability of task-evoked M-EC (matrix B) within the SRC
network.
All-Trials S-Trials Blocks
Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Anti 31 36 35 39 13 15
Anti + Pro 38 39 37 42 33 32

Note: All task-evoked EC exceeded the 95% posterior probability threshold (excluding self-connections) and was calculated by the single-group PEB
analysis for the considered conditions of the data processing with GSR (see Section 2 for details and notations). Used notations: SRC, stimulus-response
compatibility; All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks.
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stronger negative modulation of EC from the other network nodes for
the All-Trials design than for the Blocks design (Figure 5). The men-
tioned effects hold for both contrasts considered (Anti and Anti
+ Pro) and significance thresholding (corrected/uncorrected) condi-
tions. However, the matrices of the differences (All-Trials vs. Blocks)
of the task-evoked EC are sparser for the Anti contrast than for the
Anti + Pro contrast, which indicates that more edges were strongly
affected for the latter contrast by changing the GLM design between
event-related and block-based ones. The Anti + Pro contrast may
thus be considered as being more sensitive to the type of GLM design
than is the Anti contrast (Figure 5). Analogously, by comparing the

Corrected.Anti Corrected.Anti+Pro

corrected and uncorrected thresholding used for individual BOLD
extraction we found that the former (corrected) case appeared to be
somewhat less sensitive to the selection of the GLM design (Figure 5).

Similar conclusions can be drawn from the comparison between
S-Trials and Blocks GLM designs, as illustrated in Supplementary
Figure S5. Indeed, S-Trails and Blocks designs resulted in strongly dif-
ferent task-evoked M-EC, where the Anti + Pro contrast is more sen-
sitive to the variation of the GLM design than is the Anti contrast.
Likewise, the uncorrected thresholding might be more sensitive to the
GLM design for the Anti contrast, which is, however, not apparent for
the Anti + Pro case (Supplementary Figure S5). Finally, we found no

Uncorrected.Anti Uncorrected.Anti+Pro
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FIGURE 5

Comparison of task-evoked modulation of effective connectivity (M-EC) (matrix B) between the considered general linear model

(GLM) designs (All-Trials vs. Blocks). The results of PEB analyses at the group level are illustrated for the differences of B matrices, where the
latter of Block designs was subtracted from that of All-Trials designs (All-Trials-Blocks). The other considered conditions of the data processing
(contrast and thresholding) are indicated in the titles of the plots. In the circular network plots (upper row), the evident EC edges (PP > 95%) of
the difference All-Trials-Blocks are depicted. The lower (black) and the upper (green) network nodes correspond to the sources (“from”) and

destinations (“to”) of the illustrated directed connectivity, respectively (see

Section 2 for the nodes' abbreviations). The values of the M-EC are

reflected by color as indicated in the color bar. In the matrix plots (lower row), EC values are also depicted by color, and the values above

PP > 95% threshold are indicated by numbers in the corresponding cells. The network nodes indicated in the horizontal and vertical axes
correspond to the sources (“from”) and destinations (“to”) of the directed connectivity, respectively. Used notations: All-/S-Trials, experimental
designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible +
compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula;

AMCC, anterior midcingulate cortex.

FIGURE 4 Group-mean task-evoked M-EC (matrix B) for the considered conditions of the data processing indicated on the top and left sides
of the circular plots with global signal regression (GSR) (see Section 2 for details and notations). The lower (black) and the upper (green) network
nodes correspond to the sources (“from”) and destinations (“to”) of the illustrated directed connectivity, respectively. The values of the

connectivity differences are reflected by color as indicated in the color bar.

Only the M-EC (PP > 95%) was displayed by connections in the

circular maps. Used notations: All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti,
incompatible contrast; Anti + Pro, incompatible + compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal cortex; PMC, premotor
cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.
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FIGURE 6 Comparison of task-evoked M-EC (matrix B) between the considered contrasts Anti 4 Pro and Anti. The results of parametric
empirical Bayes (PEB) analyses at the group level are illustrated for the differences of B matrices, where the latter of the Anti contrast was
subtracted from that of Anti + Pro-contrast (Anti + Pro — Anti). The other considered conditions of the data processing (GLM design and
thresholding) are indicated in the titles of the plots. In the circular network plots (upper row), the evident EC edges (PP > 95%) of the difference
Anti + Pro — Anti are depicted. The lower (black) and the upper (green) network nodes correspond to the sources (“from”) and destinations (“to”)
of the illustrated directed connectivity, respectively. The values of the modulatory connectivity are reflected by color as indicated in the color bar.
In the matrix plots (lower row), EC values are also depicted by color, and the values above PP > 95% threshold are indicated by numbers in the
corresponding cells. The network nodes indicated in the horizontal and vertical axes correspond to the sources (“from”) and destinations (“to”) of
the directed connectivity, respectively. Used notations: All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs
modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible + compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal
cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.

strong differences in group-level task-evoked EC between All-Trials
and S-Trials GLM designs (Supplementary Figure Sé). This is in con-
trast to the differences observed in the group-mean EC (Figure 4),
where the All-Trials and S-Trials GLM designs exhibited different con-
nectivity within the SRC network. However, a detailed statistical anal-
ysis using the between-group PEB analysis did not confirm the

differential impact of these conditions on task-evoked EC.

3.7 | Impact of the task-evoked activation
contrasts

We observed strong effects of the considered contrasts (Anti and
Anti 4+ Pro) on task-evoked EC in the between-group PEB analysis
(Figure 6). The main differences in EC for these contrasts were found
in the edges coming from the rest of the network nodes to the driv-
ing-input nodes (L.IPS and R.IPS). This phenomenon seems to be most

pronounced for the Blocks design, whereas only one edge was
affected for the S-Trials design, which comes from the R.IPS node to
the “internal” node R.DLPFC (Figure 6, leftmost column). The Anti
+ Pro and Anti contrasts led to different modulations between driv-
ing-input nodes (L.IPS and R.IPS) and the rest of the network (Fig-
ure 6). The Blocks design appears to be more sensitive to the
selection of one or another contrast, whereas the event-related
design was less affected by the contrast. The task-evoked EC of the
“internal” edges within the SRC network (i.e., excluding the input-
driven nodes L.IPS and R.IPS) appeared to be not affected by the con-
trast variability for all other data processing conditions considered.

3.8 | Impact of GSR and significance thresholding

Different significance thresholding and GSR applications resulted in
varied patterns of evident edges (PP > 95%) of group-mean task-
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evoked EC as indicated by the single-group PEB analysis (Figure 4 and
Supplementary Figure S4). However, there were no strong differences
in the task-evoked EC when the between-group PEB analysis was
performed for a more sophisticated comparison between the condi-
tions of the significance thresholding and GSR (Supplementary
Figures S7 and S8). We therefore conclude that the task-evoked EC
can be stable with respect to variations of the significance threshold-
ing at the extraction of individual BOLD signals and the application
of GSR.

3.9 |
certainty

Between-group differences in parameter

The between-group BDC analyses demonstrated very strong evidence
for differences in parameter certainty between conditions of GLM
designs (Figure 7 and Supplementary Table S6) and between activa-
tion contrasts (Figure 7 and Supplementary Table S7). Block designs
showed much higher parameter certainty than the event-related
designs (differences from 58 to 67 nats), but there was practically no
evidence for a difference in parameter certainty between All-Trials
and S-Trials cases (<1.1 nats except for the corrected Anti + Pro con-
trast with 2.3 nats). The Anti contrast displayed higher parameter cer-
tainty (from 7 to 11 nats) than the Anti + Pro contrast. No evidence
was obtained for the certainty differences between GSR conditions
(Supplementary Table S8) and between significance thresholding con-
ditions (Supplementary Table S9), except for some evidence for the
corrected Anti + Pro contrast in the All-/S-Trials case between GSR

conditions (difference of 2.3 and 2.6 nats).

(a) Relative differences between All-Trials and Blocks
GLM designs (Block > Event)
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4 | DISCUSSION

Our study examined the impact of several important data processing
parameters on task-evoked M-EC within a brain network involved in
solving spatial incompatibility-induced response conflicts. In total, we
considered 24 data processing conditions resulting from the combina-
tion of four factors: GSR, GLM design, activation contrast, and signifi-
cance thresholding. In this study, we used the full-connection model
(i.e., with all connections between network nodes being equally
admissible) to evaluate the EC estimates resulting from different data
processing conditions, which ensured the same initial conditions for
each DCM analysis (Tuominen et al., 2023). Furthermore, different
data processing approaches investigated here can lead to altered time
series even for the same subject, which might thus result in different
optimal models for different cases. We therefore did not perform an
exhaustive DCM model selection among potential SRC network topol-
ogies (by removal of specific connections) to infer a sparser model
using Bayesian model reduction and selection approaches (Friston
et al., 2016; Stephan et al., 2009). Instead, EC was calculated for the
fully connected model of a network with nine nodes and then com-
pared between different data processing conditions. Our study
applied a two-level DCM analysis that involved single- and between-
group PEB analyses as well as BDC. The single-group PEB analysis
showed that task-evoked EC was sensitive to different choices of the
considered data processing. The between-group PEB analysis indi-
cated that varying the type of GLM design and activation contrast
may lead to strongly different task-evoked EC and parameter cer-
tainty, whereas the connectivity and parameter certainty were little

affected by GSR and significance thresholding.

(b) Relative differences between Anti and Anti+Pro (Anti

> Anti+Pro)
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FIGURE 7 The parameter certainty of Bayesian data comparison (BDC) for two specific conditions. In panels (a) and (b), we present the BDC
comparisons separately for (Block > All-Trials) and (Anti > Anti 4 Pro), respectively. The Supplementary materials provide additional comparisons
for conditions such as S-Trials > Block and Anti > Anti + Pro of S-Trials (Supplementary Table Sé and S7). The bar represents the relative

differences in parameter certainty (negative entropy) between the conditions. Notably, the Block design exhibits a significantly higher parameter
certainty compared to the All-/S-Trials design. Similarly, the Anti contrast demonstrates a notably stronger parameter certainty in comparison to

the Anti + Pro contrast.
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4.1 | Impact of GLM design

The fMRI analyses displayed consistent task-evoked activation pat-
terns (Figure 2 and Table 1) across considered GLM designs, while the
two event-related designs showed slightly higher peaks of t-values.
We note here that the employed event-related GLM resolved the
stimulus laterality of the experimental setup (Supplementary
Figure S1), which cannot be accomplished for the block-based design.
We however confirmed that the event-related GLM without modeling
the laterality condition resulted in practically the same results in the
second-level analysis.

The single-group PEB analysis showed that event-related designs
had a denser task-evoked M-EC than the block-based design (Figure 4
and Table 3), which is consistently manifested in the interactive con-
nections between driving-input nodes and the “internal” nodes of the
network. These connections may indicate that the experimental visual
inputs could effectively exert influences on “internal” nodes (Friston
et al., 2003). Although the event-related GLM designs showed more
strongly evident (with PP > 95%) modulatory connections than the
block-based design, the minimal number of evident EC edges in
the latter case can still reach 18% (compared to 58% for the event-
related case) of the network capacity with 13 connections in the task-
evoked modulatory component of EC (matrix B) from 72 possible
edges without self-connections (Table 3). This may suggest that both
types of GLM design can evoke M-EC within the SRC network driven
by task stimuli, although EC is more responsive to the task-induced
modulations for the even-related GLM.

The between-group PEB analysis further showed that strongly
altered task-evoked EC was associated with variations of GLM
design. Here, the event-related designs in most cases showed stron-
ger positive and negative connections than did the block-based
design at the group level and thus stronger responses to the experi-
ment (Figure 5). The strongly different edges mostly were the inter-
active connections between the driving-input and “internal” nodes.
This result agrees with other findings from the literature that experi-
mental manipulations can perturb the brain's neural activities and EC
parameters (Friston et al., 2003; Kahan & Foltynie, 2013). In contrast
to our study, previous research (Daunizeau et al., 2011) attempted to
find an optimized GLM design for a better model selection in DCM
using the Laplace-Chernoff risk, that is, a measure of model selection
error rates. In this case, within-subject experimental sessions were
conducted with a block (consecutive identical trials) and an event-
related (randomized trials) design, and block-based and event-related
Laplace-Chernoff risks were compared. Although the experimental
sessions included different trial-presenting paradigms, and task-
evoked EC values were not compared with each other, the reported
findings suggest that the type of GLM design can impact the DCM
analyses, at least for the model selection (Daunizeau et al., 2011).
The GLM design was also found to impact functional localizations in
task-evoked activation studies (Bihler et al., 2008; Tie et al., 2009),
when the two GLM design types were compared directly. In particu-
lar, the event-related design was found to lead to stronger activation
and functional localization in putative language areas (Tie
et al., 2009), while the block-based design exhibited more activation

in nonspecific areas (Bihler et al., 2008). The difference may have
been caused by different shapes of the hemodynamic responses,
when different GLM models were convolved with the HRF (Mechelli,
Henson, et al., 2003; Mechelli, Price, et al., 2003). Here, the variance
of the BOLD signal was better explained by GLM models of event-
related design, where the predicted hemodynamic responses reached
the peak earlier but returned to baseline later (Mechelli, Henson,
et al., 2003).

Our study analyzed data collected during an SRC task using a
mixed block/event experimental protocol (Fitts & Deininger, 1954;
Petersen & Dubis, 2012), which presents stimuli in a stochastic man-
ner within blocks of trials with the same task set (i.e., respond with
ipsilateral or contralateral button presses, respectively). On the one
hand, this protocol is fair to compare both block-based and event-
related GLMs. On the other hand, it reduced the anticipation effects
and was able to extract transient activities in event-related designs
(Dosenbach et al., 2006). As mentioned above, the event-related
design went along with stronger positive and negative connections
from the driving-input nodes to “internal” nodes and backward,
respectively, than what the block-based design did. When examining
the averaged absolute intensity of task-evoked M-EC (PP > 95%) for
each condition (Supplementary Table S10), both All-Trials and S-Trials
designs showed higher connectivity intensity than Blocks designs. The
driving-input connections may reflect the change rate of neural
responses induced by the task stimuli presented (Kahan & Folty-
nie, 2013; Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian,
Seghier, et al., 2019). The stronger positive and negative connections
involving driving-input nodes may suggest a higher responsivity of EC
to task modulations in the event-related designs than in the block-
based design. The EC sensitivity to the task-induced modulations can
be enhanced/reduced by other parameters of the data processing (see
Table 3 and Figure 4). For example, EC for the block-based design
appeared to be more responsive to the task-evoked modulations for
the Anti 4+ Pro contrast than for the Anti contrast.

While small numerical differences in M-EC values were observed
at the group level between All-Trials and S-Trials designs (Table 3 and
Figure 4), no strong difference was detected by the two-group PEB
comparisons (Supplementary Figure S6). Comparing these GLM
designs aimed at revealing a possible impact of including error trials in
the analyses of task-evoked fMRI data and EC. Usually, incorrect trials
are regressed out or excluded from consideration before analysis (Ma
et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019), because incorrect
trials are supposed to bring additional noise to the task-driven data
and may thus negatively affect the results. The small difference in EC
between the All-Trials and S-Trials designs observed in our study
might be due to the low rate of error trials of about 3% (Supplemen-
tary Figure S10) and the strict threshold for EC parame-
ters (PP > 95%).

Consistent with our findings from connectivity strength compari-
sons, the BDC analyses also suggested very strong differences (nats
>5) between event-related and block-based designs, but no difference
between the different cases of event-related designs (All-Trials vs. S-
Trials). The parameter certainty of BDC reflects the confidence that
we can place into estimated connections from a given model and is
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thought to be positively correlated to the signal-to-noise ratio (Zeid-
man, Kazan, Todd, et al., 2019). The stronger parameter certainty in
the block-based design may thus indicate a greater stability of EC esti-
mates than obtained with event-related designs. We also verified that
the event-related design resulted in broader posterior distributions of
the M-EC parameters, which, together with lower certainty, may indi-
cate an enhanced variability of the parameters and noise in the event-
related modeling approach. Nevertheless, it is interesting to observe
that the event-related GLM and DCM designs led to a larger number
of strongly evident (with PP > 95%) M-EC parameters and stronger
connectivity intensity than did the block-based design (Figure 4). In
our DCM model specification, block-based designs included a longer
time period of a constant experimental condition, which may reduce
the effect of data variability and noise and may thus contribute to
higher confidence about parameter estimates. On the other hand,
fewer evident connections and smaller total modulated connectivity
for the block-based GLM design may also indicate a reduced sensitiv-
ity of this condition to the task-evoked modulation of neuronal
dynamics and connectivity as compared to the event-related designs.
Furthermore, different GLM designs may better reflect different
cognitive substrates, where the event-related and block-based designs
can be more sensitive to transient and sustained brain activity, respec-
tively (Petersen & Dubis, 2012; Visscher et al., 2003). The mentioned
differences are, however, hardly reflected in the results of the neuro-
imaging analyses performed before DCM. For example, the brain acti-
vation maps strongly overlap for different processing conditions as
reflected by large Dice coefficients and small differences in a few peak
activation coordinates and their t-values (Table 1, and Supplementary
Tables S1 and S3). The task-evoked brain activity extracted for indi-
vidual subjects and used in DCM also exhibited a high similarity across
different processing conditions. For example, the correlation between
the BOLD signal time series of the event-related and block-based
designs is larger than 0.9 (Supplementary Figure S11). The DCM was
fitted equally well to these BOLD signals such that we cannot report
any significant difference in the variance of the empirical data
explained by DCM (Supplementary Table S4). Nevertheless, we found
noticeably different task-evoked EC estimates for different data pro-
cessing conditions, in particular, between even-related and block-
based GLM and DCM designs, which makes the reported results
intriguing. This may indicate an enhanced sensitivity of the DCM
approach, which seems to have picked up rather subtle differences in
the empirical brain activation data and DCM design (event-related
and block-based) and translated them to substantial EC differences.
The sensitivity of the DCM approach to the choice of design
(event-related vs. block-based) was confirmed by a brief examination
of the M-EC obtained for the same BOLD time series extracted for
individual subjects in the block-based GLM case for the uncorrected
Anti + Pro contrast (Supplementary Figure S12). We again observed
very different connectivity patterns for the event-related and block-
based DCM designs, which resemble the connectivity patterns illus-
trated in Supplementary Figure S4 for the group-mean M-EC and their
differences in Figure 5. The same applies to the differences in parame-

ter certainty as calculated by BDC (compare Figure 7a to

Supplementary Figure $12d), although the input data in the latter case
was the same, where we used the same BOLD time series but differ-
ent DCM designs.

Jointly considering our findings regarding connectivity strength
and parameter certainty, it is rather difficult to firmly conclude what
type of design may (generally) be better for DCM analysis if both
designs are equally reasonable to choose depending on the posed
neuroscientific questions of the study. However, we systematically
illustrated how different EC results can be for different GLM and
DCM designs, highlighting the need for a sound rationale behind this
impactful choice for any DCM analysis.

4.2 | Impact of activation contrasts

The PEB analyses showed strong differences in task-evoked EC
between the Anti and Anti + Pro contrasts. The BDC analyses also
revealed stronger parameter certainty (from 7.0 to 11.1 nats) for the
Anti contrast relative to the Anti + Pro contrast (Supplementary
Table S7). The Anti contrast reflects brain activation in response to
incompatible trials, while the Anti + Pro contrast reflects brain
responses to both incompatible and compatible trials. Psychologically,
both Anti and Anti + Pro contrasts reflect a range of SRC task-related
processes that comprise stimulus identification, attentional orienta-
tion, response selection including inhibition of the inadequate
response tendency elicited in incompatible trials, and response execu-
tion (Cieslik et al., 2010). In contrast to the Anti + Pro sum contrast,
the Anti contrast is more specifically focused on incompatibility-
related processes (Munoz & Everling, 2004; Nee et al., 2007; Reuter-
Lorenz & Park, 2010). M-EC is context-dependent, and the selection
of contrast in the DCM model can reflect the dynamics corresponding
to specific cognitive or executive processes (Kuhnke et al., 2021). In
our case, Anti + Pro and Anti contrasts showed different M-EC pat-
terns in group-mean EC (Figure 4 and supplementary Figure S4). We
further found that the Anti + Pro condition featured a stronger (posi-
tive and negative) modulatory connectivity between the driving-input
and “internal” nodes than did the Anti condition (Figure 6). Here, the
sensitivity of EC to the contrast selection was additionally influenced
by the type of GLM design, where the block-based condition
appeared to be more sensitive to the difference between Anti and
Anti 4+ Pro contrasts. The Anti + Pro contrast, in turn, featured an
enhanced sensitivity of task-evoked EC to the type of GLM design,
especially when comparing event-related and block-based designs
(see Figures 4 and 5). The difference in parameter certainty might be
related to differences in signal variability between the two contrasts.
As discussed above, the Anti + Pro contrast was assumed to reflect
the averaged level of cognitive demands across all experimental con-
ditions including compatible and incompatible cases (Figure 1),
whereas considering the Anti contrast only was supposed to reflect
states of higher cognitive demand arising from the need to solve
incompatibility-induced response conflicts. We may suspect that the
inclusion of the Pro contrast may lead to overall stronger data variabil-

ity and, thereby, lower certainty of the connectivity parameters.
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43 | GSR effects

We observed only small effects on the task-evoked brain activation
and group-level EC induced by the application of GSR (Supplementary
Figures S2 and S4). Accordingly, between-group PEB comparisons
found no strong differences in EC between the cases with/without
GSR (Supplementary Figure S8). The global signal is supposed to cap-
ture physiological and motion-related noise (Liu et al., 2017; Power
et al., 2017) and the removal of the global signal is known to strongly
influence resting-state FC (Anderson et al., 2011; Fox et al., 2009;
Murphy et al., 2009; Varikuti et al., 2017). However, regarding EC, a
recent study (Almgren et al., 2020) reported only minor differences in
within-network EC estimates during the resting state before and after
GSR. Our findings also agree with earlier studies in which the resting-
state FC retained its significant coupling (Chang et al., 2009; Weissen-
bacher et al., 2009), and task-evoked FC between functionally related
areas was not substantially affected (Mascali et al., 2021) when GSR
was applied. We also consistently observed a minor difference in
parameter certainty (from —2.6 to 1.6 nats) between the conditions
with and without GSR (Supplementary Table S8). However, the effect
of the global signal may be influenced by other factors such as inten-
sity normalization and spatial normalization methods. For instance,
some studies found that signal intensity normalization and GSR may
share a similar effect on fMRI data (Liu et al., 2017; Smith, 2004).
Although they are two distinct preprocessing steps, the intensity nor-
malization scales the signal to a common value that may potentially
remove global signals as GSR is assumed to do. In the present study,
we scaled images to a common value of 10,000, which may influence
the effect of GSR. It might be interesting to see if other data proces-
sing steps, for example, linear and nonlinear spatial normalization can
influence the impact of GSR on EC. Nevertheless, we observed a simi-
larly weak impact of GSR in line with the results of (Almgren
et al., 2020; Mascali et al., 2021), who used different data processing
pipelines. However, the effect of the global signal in task-evoked fMRI

still needs more specific and deeper investigation.

44 | Thresholding effects

The significance thresholding of the activation contrast maps influ-
enced both the extraction of the individual regional BOLD signals and
subject qualification for such a signal extraction. It was thus suspected
to be an important parameter also for the estimation of task-evoked
EC. Indeed, the choice of corrected versus uncorrected thresholding
strongly influenced the size of the sample available for subsequent
DCM analyses (see Table 2). Moreover, the density of the modulatory
components (matrix B) of task-evoked EC was altered depending on
the thresholding, especially for the Anti contrast, where the uncor-
rected thresholding led to more evident EC edges (Table 3 and Fig-
ure 4). Although sufficient sample sizes are important for the
robustness and statistical power of neuroimaging analyses (Button
et al., 2013), the proper sample size is not commonly determined (Guo
et al.,, 2014). At some point, it has been suggested that for reaching
sufficient statistical power, a sample size of 24 subjects would be

required for fMRI activation studies (Desmond & Glover, 2002), while
a sample size of at least 20 subjects was suggested for DCM studies
(Thirion et al., 2007). However, these numbers depend on the effect
size of interest, which in turn may be influenced by many factors
including tasks, acquisition parameters, and participants (Goulden
et al., 2012). From the side of reproducibility, the typical sample size
(n = 100) may reach a modest degree of replicability for task fMRI
studies (Turner et al., 2018), although the sample size for high repro-
ducibility varied across different tasks (Bossier et al., 2020).

The impact of sample size on EC estimation was not investigated
in our study, and we included samples of ~150 to 220 subjects,
mainly depending on the thresholding approach. The variation of
~25% of subjects was found to have little impact on task-evoked EC
according to the between-group PEB analysis. The first reason for this
insensitivity may be the high probability threshold (PP > 95%) of our
PEB analysis. We observed numerically different densities of group-
mean EC in conditions of corrected versus uncorrected contrasts, but
the difference was not large enough for direct comparisons via PEB
analysis to become strong (see Supplementary Figure S7). A second
reason may be related to the thresholding itself. During the SRC net-
work reconstructions for individual subjects, the cluster-corrected
(vs. uncorrected) thresholding resulted in fewer significant voxels,
leading to empty network nodes when overlapping individual maps
with the ROIls obtained from the second-level analysis and, thereby,
to subject disqualification for BOLD extraction. Different thresholding
may not affect the voxels in the vicinity of peak coordinates, and the
BOLD signals extracted for the subject samples qualified for both cor-
rected and uncorrected thresholding hardly differed from each other
(Supplementary Figure S4). This may be another reason why the
sophisticated between-group PEB analysis did not find any strong dif-
ferences in M-EC between these two conditions (Supplementary
Figure S7).

The results from BDC also showed a very minor difference rang-
ing from —0.2 to 1.1 nats in parameter certainty between corrected
and uncorrected thresholding approaches (Supplementary Table S9).
This was observed despite different sample sizes resulting from the
two thresholding approaches. Our findings thus indicate that
the choice of significance thresholding influenced the sample size but

did not much impact task-evoked EC.

45 | Limitations

Some limitations should be considered. First of all, the trade-off of
using multiple software applications, such as FSL, ANTs, AFNI, and
Workbench, instead of using a single software solution, such as SPM,
might be considered. While this approach can increase functionality
and flexibility and make it easier to be conducted in computational
clusters, it may also increase complexity and potentially impact com-
parisons to a literature that used SPM throughout. To address this
question, we used the spatially preprocessed images as described in
the Methods and then applied the SPM-based pipeline for the entire
analysis of the task-evoked fMRI data and EC calculation by DCM
(see also Arias et al, 2021; Hofmann & Straube, 2019; Park
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et al., 2018), which combined non-SPM pipelines for data processing,
but estimated EC using the SPM functions. The application of the
SPM pipeline largely confirmed our main conclusions with respect to
the differences between event-related and block-based GLM and
DCM designs with some quantitative distinctions (see Supplementary
Figure S13, Supplementary Tables S11 and S12, and the pertinent dis-
cussion in the supplementary material).

The second possible limitation can be that the present study was
initiated from the end-user perspective and focused on EC changes
when different data processing decisions were made. This may
impact interpretations of results because our study was not designed
to ask a statistically well-formed question or a specific hypothesis
testing, but focused on exploratory investigations. Third, the general-
ity of our findings may be limited to the specific task paradigm and
sample characteristics considered here, which may be evaluated in

further studies.

5 | CONCLUSION

This study investigated the impact of four important data processing
choices on the results of task-evoked fMRI analyses and EC estima-
tions via DCM in the framework of the SRC task. Our results showed
that the type of GLM design (event-related or block-based) and type
of activation contrast strongly affect task-dependent EC estimation.
In contrast, the other two processing factors examined here, GSR
application and significance thresholding, appear to have only a weak
influence on within-network task-evoked EC estimation. The event-
related design may confer a higher responsivity of EC to task stimuli,
while the block-based design featured a higher sensitivity of EC to the
type of activation contrast. Our findings showcase the differential
impact that various data processing choices may have on the estima-
tion of task-evoked EC, highlighting the importance of thoroughly
considering and further assessing these choices to help build better

models that allow for valid neuroscientific interpretations.
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