001027304 001__ 1027304
001027304 005__ 20250204113903.0
001027304 0247_ $$2doi$$a10.1016/j.carbon.2024.119252
001027304 0247_ $$2ISSN$$a0008-6223
001027304 0247_ $$2ISSN$$a1873-3891
001027304 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03735
001027304 0247_ $$2WOS$$aWOS:001292111100001
001027304 037__ $$aFZJ-2024-03735
001027304 082__ $$a540
001027304 1001_ $$0P:(DE-HGF)0$$aFiedler, Magdalena$$b0
001027304 245__ $$aThe role of nanoporous carbon materials for thiophosphate-based all solid state lithium sulfur battery performance
001027304 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001027304 3367_ $$2DRIVER$$aarticle
001027304 3367_ $$2DataCite$$aOutput Types/Journal article
001027304 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724061839_31966
001027304 3367_ $$2BibTeX$$aARTICLE
001027304 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001027304 3367_ $$00$$2EndNote$$aJournal Article
001027304 500__ $$aThis research and development results are funded by the German Federal Ministry of Education and Research (BMBF) within the SoLiS project (Grant No. 03XP0395) and AReLiS-3 project (03XP0595).
001027304 520__ $$aDue to their high theoretical energy density, all solid state lithium sulfur batteries (LS-SSB) represent one of the most promising candidates for next-generation energy storage systems. Whilst high sulfur utilizations have been published for several cathode compositions and preparation methods in recent years, there is still a lack of clarity regarding the influence of the used carbon. Furthermore, LS-SSBs face challenges in up-scaling as the common preparation methods including high energy ball milling are time consuming, batch-wise and need high energy impact. In this study, high sulfur utilization >1600 mAh g$_S^{−1}$ and reversibility with 80 % of initial discharge capacity after 60 cycles is achieved, using a more time-efficient preparation method with drastically lowered energy impact by selecting a suitable carbon. Additionally, the influence of the carbon nanostructure on the electrochemical performance is discussed. This study provides guidance in selecting nanostructured carbon materials to enable cost-efficient, up-scalable preparation methods for LS-SSBs without compromising on the excellent electrochemical performance.
001027304 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001027304 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001027304 7001_ $$0P:(DE-HGF)0$$aLange, Martin A.$$b1
001027304 7001_ $$0P:(DE-HGF)0$$aHippauf, Felix$$b2
001027304 7001_ $$00000-0002-4552-8189$$aDörfler, Susanne$$b3$$eCorresponding author
001027304 7001_ $$0P:(DE-HGF)0$$aAlthues, Holger$$b4
001027304 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5
001027304 7001_ $$0P:(DE-HGF)0$$aKaskel, Stefan$$b6
001027304 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2024.119252$$gVol. 227, p. 119252 -$$p119252$$tCarbon$$v227$$x0008-6223$$y2024
001027304 8564_ $$uhttps://juser.fz-juelich.de/record/1027304/files/1-s2.0-S0008622324004718-main.pdf$$yOpenAccess
001027304 8564_ $$uhttps://juser.fz-juelich.de/record/1027304/files/1-s2.0-S0008622324004718-main.gif?subformat=icon$$xicon$$yOpenAccess
001027304 8564_ $$uhttps://juser.fz-juelich.de/record/1027304/files/1-s2.0-S0008622324004718-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001027304 8564_ $$uhttps://juser.fz-juelich.de/record/1027304/files/1-s2.0-S0008622324004718-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001027304 8564_ $$uhttps://juser.fz-juelich.de/record/1027304/files/1-s2.0-S0008622324004718-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001027304 909CO $$ooai:juser.fz-juelich.de:1027304$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001027304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001027304 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001027304 9141_ $$y2024
001027304 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001027304 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001027304 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001027304 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001027304 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARBON : 2022$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001027304 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCARBON : 2022$$d2024-12-16
001027304 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001027304 980__ $$ajournal
001027304 980__ $$aVDB
001027304 980__ $$aUNRESTRICTED
001027304 980__ $$aI:(DE-Juel1)IEK-12-20141217
001027304 9801_ $$aFullTexts
001027304 981__ $$aI:(DE-Juel1)IMD-4-20141217