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Abstract This study focuses on the interaction of the pseu-
doscalar meson octet and the baryon decuplet. In the contin-
uum, it is observed that several J P = 3

2
−

baryon resonances
can be produced by the Weinberg-Tomozawa interaction in
unitarized chiral perturbation theory, including the N (1875),
�(1670), �(1910), �(1820) and �(2012). Among them,
the �(1820) and �(1670) may exhibit a potential two-pole
structures. The unitarized chiral perturbation approach is then
applied as the underlying theory to predict the energy levels
of these systems in a finite volume. These energy levels are
well described by the K -matrix parameterization constrained
by flavor SU(3) symmetry. With the parameters from the best
fits, the poles extracted from the K -matrix parameterization
closely correspond to those derived from the underlying chi-
ral effective field theory, as long as they are close to physical
region and not significantly higher than the lowest relevant
threshold.

1 Introduction

The interaction between the octet of pseudoscalar mesons
(referred to as �, which are the Goldstone bosons resulting
from the spontaneous breaking of chiral symmetry) and mat-
ter fields can be effectively described using chiral perturba-
tion theory (ChPT). Unitary treatments of the chiral dynamics
(for early reviews, see [1,2]) can well reproduce the physi-
cal resonances as dynamical generated poles, including the
f0(500), f0(980) and a0(980) in Ref. [3], the �(1405) in
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Refs. [4–8], the low-lying axial-vector mesons in Ref. [9],
the D∗

0(2300) in Refs. [10–12] and so on.
In unitarized ChPT (UChPT) a characteristic finding is

that certain systems may have two poles with overlapping
signals on the real axis. This phenomenon is commonly
referred to as the two-pole structure in literature, with notable
examples being the �(1405) and D∗

0(2300). For a recent
review on such two-pole structures, we refer to Ref. [13].
We also note the recent work [14] where two-pole struc-
tures in the isospin-1/2 K�c-π�′

c coupled channel system
where discussed. Additionally, in Ref. [15], it was observed
that the S-wave interaction between the � and the ground
J P = 3

2
+

baryon decuplet (referred to as T hereafter) within
the UChPT may result in potential two-pole structures in the
(S, I ) = (−1, 1) and (−2, 1

2 ) channels, where S and I rep-
resent strangeness and isospin, respectively.

On the other hand, lattice QCD is increasingly impor-
tant in the study of the hadron spectrum. The energy levels
obtained on the lattice are typically fitted using the K -matrix
parameterization, as shown in Refs. [16,17]. When dealing
with coupled channels, the K -matrix parameterization often
involves a large number of parameters if no symmetry is
taken into account. In Ref. [17], the energy levels of the Dπ ,
Dη, and Ds K̄ coupled channels from the lattice study were
fitted, resulting in nine sets of parameters with acceptable
χ2/d.o.f. in the S-wave case. In addition to a reliable bound
state below the Dπ threshold, there is another higher pole in
the complex plane. However, the precise position of this pole
has large uncertainties and is not consistent across different
solutions. This issue is addressed in Ref. [18], where flavor
SU(3) symmetry is taken into account when constructing the
K -matrix. This means that the parameters in the K -matrix are
not completely independent, leading to a significant reduc-
tion in the number of free parameters. As a result, the higher
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pole becomes more stable, providing support for the two-pole
structure of the D∗

0(2300) [19].
In this study, we aim to reevaluate the interaction between

� and T using a similar approach as outlined in Ref. [15].
However, we will make slight adjustments to the subtrac-
tion constants in the meson-baryon loop functions. We will
then compare the dynamically generated poles with the res-
onances listed in the Review of Particle Physics (RPP) [20].
Additionally, we will investigate the behavior of the �T sys-
tems in a finite volume. By considering UChPT as the under-
lying framework, we can predict the energy levels of the �T
systems. Subsequently, we will fit these energy levels using
the amplitude parameterized by the K -matrix, incorporating
constraints from flavor SU(3) symmetry. This analysis will
allow us to assess whether the SU(3) constrained K -matrix
parameterization adequately describes the energy levels in
finite volume and accurately reproduces the pole positions.
Ultimately, our findings will serve as valuable guidance for
future lattice studies on such systems.

2 Resonances from UChPT

The interaction between the pseudoscalar meson octet and
baryon decuplet can be elucidated using chiral perturbation
theory. Specifically, at the lowest order, the Lagrangian can
be expressed as follows [21–24]

L = −i T̄μ
abc

/DT abc
μ (1)

where T abc
μ represents the baryon decuplet, with a, b, c ∈

{1, 2, 3} flavor indices. It is important to note that T abc
μ is

fully symmetric in the flavor indices. The identification of
T abc

μ with the physical states is1

T 111 = 
++, T 112 = 
+
√

3
, T 122 = 
0

√
3
, T 222 = 
−,

T 113 = −�∗+
√

3
, T 123 = −�∗0

√
6

, T 223 = −�∗−
√

3
,

T 133 = �∗0

√
3

, T 233 = �∗−
√

3
, T 333 = −�−. (2)

The covariant derivative is expressed as

DνTμ
abc = ∂νTμ

abc + (
V ν

)d
a T

μ
abc + (

V ν
)d
b T

μ
adc + (

V ν
)d
c T

μ
abd

(3)

1 The negative signs associated with the �∗ and � states can be
attributed to the phase convention used in the SU(3) Clebsch–Gordan
coefficients in Ref. [25].

where the vector current is

Vμ = 1

2

(
ξ∂μξ† + ξ†∂μξ

)
(4)

with

ξ = exp

(
i�√
2 fπ

)
, (5)

� =
⎛

⎜
⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 − 2√
6
η

⎞

⎟
⎠ (6)

and fπ = 92.4 MeV the pion decay constant.
The potential of the interaction between � and T can be

determined by utilizing the Lagrangian equation provided in
Eq.(1). The transition from channel i to channel j can be
represented as stated in the following reference [5,15],2

Vi j = − Ci j

4 f 2
π

√
4mim j (k

0 + k′0), (7)

where k and k′ denote the momenta of the incoming and
outgoing mesons, respectively. The constant Ci j relies on
the specific incoming and outgoing channels, and can be
determined by utilizing the Lagrangian equation provided
in Eq. (1).3 As mostly done in the literature, we neglect here
the Born terms, that are formally also of leading order. We
refer to Refs. [26,27] for some detailed discussions.

By utilizing the potential defined in Eq. (7), we can solve
the on-shell Bethe-Salpeter equation

T = (1 − VG)−1V (8)

to search for poles of the S-wave �T system. The two point
loop function for a meson with mass M and a baryon with
mass m reads [6]

G(s) = i
∫

d4q

(2π)4

1

(P − q)2 − m2 + iε

1

q2 − M2 + iε

= 2m

16π2

{
a(μ) + log

m2

μ2 + s − 


2s
log

M2

m2

+ k√
s

[
log

(
2k

√
s + s + 


) + log
(
2k

√
s + s − 


)

− log
(
2k

√
s − s + 


) − log
(
2k

√
s − s − 


) ]}
,

(9)

2 The convention used for Vi j differs from that in Ref. [15] by a factor
of

√
4mim j . Consequently, the loop function in Eq. (9) is different from

that in Ref. [15] by a factor of 2m.
3 Note that several Ci j are opposite to those in Ref. [15] due to the
phase conventions in Eq. (2).
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where 
 = m2 − M2, k represents the 3-momentum of the
meson in the center of mass frame, and a(μ) is a subtraction
constant with μ the scale of dimensional regularization (DR).
In Ref. [15], the subtraction constant is assigned a value of
−2 for μ = 700 MeV. Subsequently, several poles of the
scattering amplitude T are found, some of which may provide
an explanation for the J P = 3

2
−

baryons in the RPP [20]. In
this paper, we follow the approach outlined in Refs. [28–30],
where the loop function satisfies

G(s = m2; a(μ)) = 0, (10)

and accordingly, a(μ) is determined for a given μ. It is worth
noting that this approach is consistent with Ref. [15] in the
SU(3) symmetry case, albeit slightly different for the physical
masses.

In order to search for poles of the scattering amplitude, it
is necessary to examine the complex energy plane. The pres-
ence of intermediate states that satisfy the on-shell condition
leads to what is known as right-hand cuts. By crossing the cut
to the unphysical Riemann sheet (RS) of a specific channel,
the loop function undergoes the following modification,

G(−)(s) = G(+)(s) + 2im
k

4π
√
s
, (11)

where G(+)(s) represents the loop function on the physical
RS defined in Eq.(9) and k denotes the 3-momentum in the
center-of-mass frame. In the case ofn coupled channels, there
are a total of 2n RSs, which can be distinguished by the labels
(±,±, . . . ,±), where the i-th ± indicates the loop function
of the i-th channel. For a nice pictorial of this, see e.g. Fig. 3
in Ref. [31].

Based on the flavor SU(3) symmetry, we can decompose
the �T system in flavor space as follows,

10 ⊗ 8 = 8 ⊕ 10 ⊕ 27 ⊕ 35. (12)

The corresponding coefficients in the potential are

Ci j = diag(6, 3, 1,−1), (13)

as obtained in Refs. [15,32]. These suggest that the octet and
decuplet have strong attractions, the 27-plet exhibits a weak
attraction while the 35-plet is repulsive. Therefore, we expect
the presence of near-threshold poles in the octet and decuplet
systems. After the breaking of SU(3) symmetry, channels in
different multiplets with the same strangeness and isospin
(S, I ) can couple with each other. In the following discussion,
we will focus on the six combinations of (S, I ) that appear
in the octet and decuplet systems. The possible poles in each
(S, I ) sector are listed in Table 1, along with the possible
corresponding resonances collected in the RPP [20]. In the

following, we provide some detailed discussions for each
sector.

For the case of (S, I ) = (0, 1/2), there exist two channels,
namely (π
, K�∗), with thresholds (1370, 1880) MeV. Uti-
lizing the coefficient matrix Ci j where

Ci j =
(

5 −2
−2 2

)
, (14)

one can find two poles. One pole is located at 1387−77i MeV
on RS (−+), directly linked to the physical region and result-
ing in a broad peak on the physical axis. In the RPP, the closest
baryon to this pole is the N (1520), situated approximately at
1510−55i MeV. We do not propose to match these states here
as done in [15], as a better UChPT description based on Gold-
stone boson scattering of the baryon ground state octet can be
obtained [26]. The second pole, found at 1883+12i MeV on
RS (+−), is not directly connected to the physical region. Its
influence on |TK�∗→K�∗ | is reflected as a peak-like thresh-
old cusp exactly at the K�∗ threshold [33]. In the RPP, there
is a nearby baryon N (1875) located around 1900−80i MeV.
The threshold cusp in our model provides a possible explana-
tion for the experimental signal of the N (1875). It is found in
Refs. [34,35] that there is no place for N (1875) being a three
quark state in the constituent quark model. A detailed study
of N (1875) from the K�∗ interaction, together with several
coupled channels and possible triangle singularity, is pre-
sented in Ref. [36]. In Refs. [37,38], the N (1875) is identified
as a K�∗ bound state in the one-boson-exchange model. A
recent analysis [39] on the pion- and photon-induced produc-
tion of πN , ηN , K� and K� final states within the Jülich-
Bonn model also indicates a dynamically generated state in
D13 partial wave, whose mass is close to N (1875) but the
total width (� > 600 MeV) is much larger.

For the case of (S, I ) = (0, 3/2), there are three channels,
namely π
, η
 and K�∗, with corresponding thresholds at
1370, 1780, and 1880 MeV. Utilizing the matrix Ci j where

Ci j =
⎛

⎝
2 0 −√

5/2
0 0 −3/

√
2

−√
5/2 −3/

√
2 −1

⎞

⎠ , (15)

one can find three poles, located at 1477 − 194i MeV on
the RS (− + +), 1909 − 19i MeV on the RS (−−+) and
1527−247i MeV on the RS (−−−). The first two poles can
leave imprints on the scattering amplitude whereas the third
pole lies far outside the physical region. However, there are
no suitable candidates in the RPP for the first two poles.

For the case of (S, I ) = (−1, 0), there are two channels,
namely, π�∗ and K�∗, with corresponding thresholds of
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Table 1 The poles of �T systems prediced by UChPT and the possibly corresponding J P = 3
2

−
baryons as listed in the RPP [20]

(S, I ) Threshold (MeV) UChPT RPP

Pole (MeV) RS Resonance Pole (MeV)

(0, 1
2 ) (1370, 1880) 1387 − 77i (−+)

1883 + 12i (+−) N (1875) 1900 − 80i

(0, 3
2 ) (1370, 1780, 1880) 1477 − 194i (− + +)

1909 − 19i (−−+)

1527 − 247i (−−−)

(−1, 0) (1523, 2029) 1560 − 97i (−+)

2033 − 18i (−+)

(−1, 1) (1523, 1728, 1932, 2029) 1609 − 8i (− + ++) �(1670) 1665 − 28i

1664 − 194i (− + ++)

1986 − 11i (−− + +)

1965 − 62i (−− − +) �(1910) 1910 − 110i

(−2, 1
2 ) (1671, 1880, 2081, 2168) 1806 − 16i (− + ++) �(1820) 1823 − 12i

1818 − 170i (− + ++)

2093 − 51i (−− − +)

(−3, 0) (2029, 2220) 2016 (++) �(2012) 2012 − 3i

1523 and 2029 MeV. By utilizing the matrix Ci j given by

Ci j =
(

4
√

6√
6 3

)
, (16)

one can find two poles, both located on the RS (−+), one at
1560−97i MeV and the other at 2033−18i MeV. However,
there is no state in the RPP that corresponds to these two
poles.

For the case of (S, I ) = (−1, 1), there are four chan-
nels, namely, π�∗, K̄
, η�∗ and K�∗, with with respective
thresholds at 1523, 1728, 1932 and 2029 MeV. By utilizing
the matrix Ci j given by

Ci j =

⎛

⎜⎜
⎝

2 1 0 −2
1 4 −√

6 0
0 −√

6 0 −√
6

2 0 −√
6 1

⎞

⎟⎟
⎠ , (17)

one can find four poles. The one located at 1609 − 8i MeV
on the RS (− + ++) may correspond to the �(1670) at
1665 − 30i MeV in the RPP. On the same RS, there exists
a broader pole at 1664 − 194i MeV, which has the potential
to distort the narrower pole and may result in a two-pole
structure. The pole at 1986 − 11i MeV on the RS (−−++)

is not directly linked to the physical axis and therefore has a
negligible effect. Conversely, the poles at 1965 − 62i MeV
on the RS of (−−−+) are directly connected to the physical
axis and can be matched to the �(1910) at 1910−110i MeV
in RPP.

For the case of (S, I ) = (−2, 1/2), there are four chan-
nels, namely π�∗, K̄�∗, η�∗ and K�, respective thresholds
at 1671, 1880, 2081, and 2168 MeV. By utilizing the matrix
Ci j given by

Ci j =

⎛

⎜⎜
⎝

2 1 0 3/
√

2
1 2 −3 0
0 −3 0 −3/

√
2

3/
√

2 0 −3/
√

2 3

⎞

⎟⎟
⎠ , (18)

one can find three poles. The pole at 1806 − 16i MeV on
the RS (− + ++) is close proximity to the �(1820) in the
RPP. Similarly to the (S, I ) = (−1, 1) case, there is another
broader pole at 1818−170i MeV on the same RS, which has a
similar mass but significantly different width. This suggests
the presence of a possible two-pole structure. It has been
pointed out in Ref. [40] that these two poles can effectively
describe the experimental data in the vicinity of the �(1820)

region [41]. The pole at 2093 − 51i MeV on RS (− − −+)

can lead to observable peaks around 2100 MeV, although as
of now, no corresponding state has been identified in the RPP.

For the case of (S, I ) = (−3, 0), there are two channels,
namely K̄�∗ and η�, with corresponding thresholds at 2029
and 2220 MeV. By utilizing the matrix Ci j given by

Ci j =
(

0 3
3 0

)
, (19)

one can find a bound state at 2016 MeV on RS (++). This
finding is consistent with the recently observed �(2012)
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reported in the Belle experiment [42], as also discussed in
Refs. [43–46]

Please note that the poles we have obtained are qualita-
tively consistent with those in Ref. [15], although the precise
pole positions differ. It is important to emphasize that the
positions of the poles depend significantly on the subtraction
constants a(μ), and for each channel, a(μ) may need to be
adjusted slightly in order to match the observed resonances.
The dynamically generated poles from UChPT that are still
missing can be searched for in future experiments and lattice
studies.

3 Energy levels in finite volume from UChPT

In order to examine the energy levels of the �T systems
within a finite volume, we have to modify the loop function
used in the previous section. Instead of using dimensional
regularization, we introduce a form factor to regularize the
loop function, which is given by:

G(s) = i
∫

d4q

(2π)4

1

(P − q)2 − m2 + iε

1

q2 − M2 + iε

→
∫

d3q
(2π)3

F(|q|)
2ωm(q)ωM (q)

ωm(q) + ωM (q)

s − (ωm(q) + ωM (q))2 + iε
(20)

where ωm(q) = √
q2 + m2, ωM (q) = √

q2 + M2 and P =
(
√
s, 0). The form factor, as chosen in Refs. [18,47], is given

by

F(q) = �12

�12 + q12 (21)

with the cutoff parameter � = 1.2 GeV. Unitarity dictates
that F(q) must be equal to 1 when the momentum q is on-
shell. To ensure that the difference F(q) − 1 is less than 1%
within the energy range of interest in the subsequent anal-
ysis, the power 12 is chosen. It is worth noting that with
this form factor, the loop function is significantly larger than
the one used in last section, which in turn leads to the pres-
ence of bound states in certain channels. In lattice studies,
the pion mass is typically larger than its physical mass. In
ChPT, the interaction between Goldstone bosons and mat-
ter fileds becomes stronger as the masses of the Goldstone
bosons increase. Therefore, in the following, we will retain
the physical masses of the pseudoscalar mesons and utilize
the larger loop function given in Eq. (20).

The energy levels in finite volume are determined by the
poles of the scattering amplitude T̃ , which can be solved

Fig. 1 The lowest energy levels in a cubic volume of finite size of
length L , for the systems with (S, I ) = (0, 1/2). The yellow circles
represent the predictions incorporating interaction from the UChPT.
The red line represents the best fit achieved using the SU(3) constrained
K -matrix parametrization. The gray dashed lines denotes the relevant
thresholds in close proximity

using the equation

T̃ = (1 − Ṽ G̃)−1Ṽ (22)

where the loop function in finite volume reads

G̃ = 1

L3

∑

q

F(|q|)
2ωm(q)ωM (q)

ωm(q) + ωM (q)

s − (ωm(q) + ωM (q))2 (23)

with L the length of the spatial space and

q = 2π

L
n, n ∈ Z

3. (24)

The potential in the finite volume, denoted as Ṽ , is the same
as that in the continuous case, with exponentially suppressed
corrections [48,49]. Therefore, we can use Eq.(7) for Ṽ . The
lowest energy levels for each (S, I ) sector are represented by
the yellow circles in Figs. 1, 2, 3, 4, 5 and 6.

4 Fitting with an SU(3) K -matrix parameterization

The energy levels obtained from lattice calculations in finite
volume are often analyzed by fitting them with a parame-
terized scattering amplitude using the K -matrix approach.
For example, in Refs. [16,17], the S-wave coupled-channel
scattering amplitudes are parameterized as

t−1
i j (s) = K−1

i j (s) + Ii j (s) (25)
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Fig. 2 The lowest energy levels in a cubic volume of finite size with
a length of L for systems with (S, I ) = (0, 3/2). See the caption of
Fig. 1

Fig. 3 The lowest energy levels for the systems with (S, I ) = (−1, 0).
See the caption of Fig. 1

where

Ki j (s) =
(
g(0)
i + g(1)

i s
) (

g(0)
j + g(1)

j s
)

m2 − s
+ γ

(0)
i j + γ

(1)
i j s,

(26)

Ii j (s) = δi j

(
I (i)
CM(s) − I (i)

CM(m2)
)

. (27)

Here, m, g(0,1)
i and γ

(0,1)
i j are parameters. The imaginary part

of t−1
i j (s) is constrained by the unitarity and ICM(s) is the

Fig. 4 The lowest energy levels for the systems with (S, I ) = (−1, 1).
See the caption of Fig. 1

Fig. 5 The lowest energy levels for the systems with (S, I ) =
(−2, 1/2). See the caption of Fig. 1

Fig. 6 The lowest energy levels for the systems with (S, I ) = (−3, 0).
See the caption of Fig. 1
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Chew-Mandelstam prescription [50],

I (i)
CM(s) = ρi (s)

π
log

[
ξi (s) + ρi (s)

ξi (s) − ρi (s)

]

− ξi (s)

π

m(i)
2 − m(i)

1

m(i)
2 + m(i)

1

log
m(i)

2

m(i)
1

(28)

with

ξi (s) = 1 −
(
m(i)

1 + m(i)
2

)2
/s, (29)

ρ2
i (s) = ξi (s)

(
1 −

(
m(i)

1 − m(i)
2

)2
/s

)
, (30)

where m(i)
1 and m(i)

2 are the masses of the two particles in
channel i . Note that Ii j (s) in Eq. (27) are subtracted at the
mass of the bound state, if it exists. Otherwise, if no bound
state is present, the subtraction points will be chosen at the
corresponding threshold.

From Eq. (22), the scattering amplitude with the K -matrix
parameterization in finite volume can be expressed as,

T̃K = 1

Ṽ−1 − G̃
= 1

T−1
K + G − G̃

= 1

−t−1/(16π) + G − G̃
, (31)

where t−1 = −16πT−1
K is defined in Eq. (25). After the

parameters are determined by the fit procedure, we can
extract the pole positions of T̃K .

In the K -matrix parameterization, the RS is determined
by the imaginary part of ρi (s). More precisely, in the case
of n coupled channels, the scattering amplitude’s 2n RSs are
identified by (±,±, . . . ,±), where the i-th ± stands for the
sign of the imaginary part of ρi (s). Such a convention is
consistent with Eq. (11).

4.1 Flavor SU(3) symmetry

The K -matrix parameterization mentioned above contains a
large number of parameters. In order to reduce the number of
free parameters, we adopt the approach outlined in Ref. [18]
by modifying the K -matrix in Eq. (26) as follows:

K (S,I ) =
∑

R

⎛

⎜
⎝

(
g(S,I )
R

)2

(
m(S,I )

R

)2 − s
+ c(S,I )

R

⎞

⎟
⎠C (S,I )

R , (32)

where g(S,I )
R , c(S,I )

R and m(S,I )
R are real parameters and CR is

a constant matrix that depends on the representation of SU(3)
and the (S, I ) of the system. For a given (S, I ), the coupled
channels can be decomposed into the direct sum of several

multiplets of the SU(3) group, and R in Eq. (32) represents all
multiplets involved in the decomposition. We have observed
that for R = 8 and 10, there exist near threshold poles, while
for R = 27 and 35, the interaction is too weak to generate
poles. Therefore, we will not include the pole term in Eq. (32),
specifically setting g(S,I )

27 = g(S,I )
35 = 0.

For the case of (S, I ) = (0, 1/2), the relation between
the isospin-symmetric particle basis (|π
〉 , |K�∗〉) and the
SU(3) flavor basis (|8〉 , |27〉) is given by

( |8〉
|27〉

)
= U

( |π
〉
|K�∗〉

)
, (33)

where the transformation matrix U can be read from the
SU(3) CG coefficients [25],

U =
√

1

5

(−2 1
1 2

)
. (34)

By applying this transformation, we can obtain the following
expressions

C (0,1/2)
8 = 1

5

(
4 −2

−2 1

)
, (35)

C (0,1/2)
27 = 1

5

(
1 2
2 4

)
. (36)

The same procedure can be applied to calculate the coupling
structures for the other systems, and the results are summa-
rized in Appendix A.

4.2 Fit results

By employing the loop function in equation Eq. (20), we
can determine the poles of the scattering amplitude for each
(S, I ) sector. These poles are documented in Table 2. Upon
comparison with the poles listed in Table 1, it becomes evi-
dent that the employed form factor generates significantly
stronger interactions in comparison to the DR form in Eq. (9).

The SU(3) constrained K -matrix parameterization in
Eq. (32) has been used to fit the energy levels of �T sys-
tems in finite volumes generated by the UChPT interaction,
as shown by the yellow circle in Figs. 1, 2, 3, 4, 5 and 6.
The red solid lines in the same plots represent the obtained
best fits. It is evident that that the lowest energy levels in
each (S, I ) sector can be well described by the K -matrix in
Eq. (32). The parameters obtained from the fitting process
are given in Appendix B.

The poles obtained from Eq. (31) using the best fitted
parameters are presented in Table 2. By comparing the poles
listed in the third column to those in the fifth column, we can
observe that in each (S, I ) sector, the poles located near the
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Table 2 The poles of �T systems predicted by the UChPT with loop function in Eq. (20) and those extracted from the K -matrix parameterization
by fitting the energy levels in finite volume generated by the UChPT

(S, I ) Threshold (MeV) UChPT K -matrix

Pole (MeV) RS Pole (MeV) RS

(0, 1
2 ) (1370, 1880) 1347 (++) 1343 (++)

1878 − 14i (−+) 1896 − 39i (−+)

(0, 3
2 ) (1370, 1780, 1880) 1431 − 53i (− + +) 1427 − 53i (− + +)

1784 − 18i (− + +) 1784 − 16i (− + +)

1572 − 99i (−−+) 1589 − 9i (−−+)

(−1, 0) (1523, 2029) 1512 (++) 1507 (++)

2000 − 48i (−+) 2004 − 133i (−+)

(−1, 1) (1523, 1728, 1932, 2029) 1383 (+ + ++) 1383 (+ + ++)

1603 − 48i (− + ++) 1596 − 52i (− + ++)

1925 − 39i (− + ++) 1922 − 11i (− + ++)

1591 − 46i (−− + +) 1603 − 46i (−− + +)

1929 − 57i (−− + +) 1926 − 8i (−− + +)

1840 − 95i (−−−+) 1774 − 3i (−−−+)

(−2, 1
2 ) (1671, 1880, 2081, 2168) 1600 (+ + ++) 1599 (+ + ++)

1758 − 36i (− + ++) 1757 − 41i (− + ++)

2041 − 94i (−− + +) 2023 − 45i (−− + +)

2008 − 104i (−−−+) 1981 − 178i (−−−+)

(−3, 0) (2029, 2220) 1860 (++) 1860 (++)

physical region and with lower masses exhibit better agree-
ment with each other, while the higher the pole is, the greater
the difference between the two cases. This phenomenon can
be attributed to the different energy dependence exhibited by
the scattering amplitude. The K -matrix effectively describes
the UChPT interaction within a finite energy range, and as
the energy range expands, the discrepancy becomes more
noticeable.

To verify the consistency of the poles in the two scenarios,
taking into account the uncertainties of the fit procedure,
we conducted an error analysis using the (S, I ) = (0, 1/2)

sector as a case study. Since the energy levels were calculated
using UChPT interaction without any errors, comparing the
χ2/d.o.f. directly with 1 and interpreting the uncertainties
of the fitted parameters would be inappropriate. It is worth
mentioning that the energy level errors in Ref. [17] are on
the order of 10 MeV, which is typically larger for baryons in
lattice studies. Therefore, we assigned an error of 20 MeV
to the energy levels of the �T systems. For the particular
case of the (S, I ) = (0, 1/2) sector, the two poles were
found to be located at 1343 ± 11 MeV on the RS (++) and
at 1896+26

−19 − 14+13
−9 i MeV on the RS (−+). The first pole in

both cases exhibits agreement within the uncertainty, while
the higher pole does not, as shown in Fig. 7. We have used
MINUIT [51–53] to fit the data and obtained the errors of
the free parameters. According to the correlation matrix and
errors, we can produce a number of samples. Then those

sets of parameters within 1σ defined by the Mahalanobis
distance [54] are used to calculate the pole positions.

5 Summary

In this study, our primary focus is on investigating the interac-
tions between the pseudoscalar meson octet and the baryon
decuplet with J P = 3

2
+

, with the aim of identifying any

potential resonances with J P = 3
2
−

. To achieve this, we
have utilized slightly different subtraction constants com-
pared to those used in Ref. [15]. By doing so, we have iden-
tified several poles which potentially correspond to the reso-
nances listed in the RPP [20], such as the N (1857), �(1670),
�(1910), �(1820), and �(2012). Furthermore, our findings
confirm the two-pole structure of the �(1820), as pointed out
in Ref. [40]. Additionally, we place emphasis on the potential
two-pole structure for the �(1670).

Next, we examine the interaction between �T in a finite
volume. To regularize the two point Green’s function, we
introduce a form factor, which allows us to identify addi-
tional poles in these systems. These poles include several
bound states that lie below the lowest threshold in each (S, I )
sector. Using UChPT as the underlying theory, we make pre-
dictions for the energy levels in finite volume with different
lengths, denoted as L . These predicted energy levels are then
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Fig. 7 The distribution of the pole positions on RS (++) and (−+) for the systems with (S, I ) = (0, 1/2) within 1 σ

fitted using an amplitude parameterized by the K -matrix,
which satisfies flavor SU(3) symmetry. The utilization of
SU(3) symmetry in the parameterization of the K -matrix
helps reduce the number of parameters and improves the
stability of the fit. The goodness of fit for the lowest four
or five energy levels is satisfactory in each (S, I ) sector. By
employing the parameters obtained from the best fits, we
determine the pole positions of the K -matrix parameterized
amplitude. We find that the K -matrix parametrization is able
to accurately reproduce the poles of the underlying theory
only when the pole is close to the physical region and its
mass is not too far from the lowest relevant threshold. This
suggests that when fitting the energy levels obtained from lat-
tice study using the K -matrix parameterization, we should
be mindful of the applicable energy region and be cautious
when dealing with poles that are too high, as they may not be
reliable. Note that if one wants to extend the range of applica-
bility of the method discussed here, one has to include more
terms (and poles) in the K -matrix parametrization, which
also increases the numebr of fit parameters.
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Appendix A: SU(3) symmetric coupling structures

In this appendix we present the SU(3) symmetric coupling
structures C (S,I )

R .

C
(0, 1

2 )

8 = 1

5

(
4 −2

−2 1

)
,

C
(0, 1

2 )

27 = 1

5

(
1 2
2 4

)
. (A1)

C (−1,0)
8 = 1

5

(
3

√
6√

6 2

)
,

C (−1,0)
27 = 1

5

(
2 −√

6
−√

6 3

)
. (A2)

C (−1,1)
8 = 1

5

⎛

⎜⎜⎜⎜
⎜⎜
⎝

8
3 −2

√
2
3

4
3

4
3

−2
√

2
3 1 −

√
2
3 −

√
2
3

4
3 −

√
2
3

2
3

2
3

4
3 −

√
2
3

2
3

2
3

⎞

⎟⎟⎟⎟
⎟⎟
⎠

,

C (−1,1)
10 = 1

3

⎛

⎜⎜
⎝

1 −1 0 1
−1 1 0 −1
0 0 0 0
1 −1 0 1

⎞

⎟⎟
⎠ ,
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C (−1,1)
27 = 1

20

⎛

⎜⎜
⎝

9 3 3
√

6 −6
3 1

√
6 −2

3
√

6
√

6 6 −2
√

6
−6 −2 −2

√
6 4

⎞
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⎠ ,

C (−1,1)
35 = 1
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⎛
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⎝
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−1 1
√

6 2
−√

6
√

6 6 2
√

6
−2 2 2

√
6 4

⎞

⎟⎟
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√
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2
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√
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√
2 18

⎞
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C
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16
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2
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2
−3 6 9 3

√
2

−√
2 2

√
2 3

√
2 2

⎞

⎟⎟
⎠ . (A4)

C (−3,0)
10 = 1

2

(
1 1
1 1

)
,

C (−3,0)
35 = 1

2

(
1 −1

−1 1

)
. (A5)
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5 −√

10√
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1

√
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√
10√
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Appendix B: Parameters from best fits

We collected here the parameters from the best fits for each
(S, I ) sector.

g(0,1/2)
8 = 769 MeV,

m(0,1/2)
8 = 1343 MeV,

c(0,1/2)
8 = −4.1,

c(0,1/2)
27 = 2.1. (B1)

g(−1,1)
8 = 48.7 MeV,

m(−1,1)
8 = 1383 MeV,

c(−1,1)
8 = 19.5,

g(−1,1)
10 = 4275 MeV,

m(−1,1)
10 = 1841 MeV,

c(−1,1)
10 = −44.3,

c(−1,1)
27 = −2.8,

c(−1,1)
35 = 0.4. (B2)

g(−1,0)
8 = 984.5 MeV,

m(−1,0)
8 = 1506 MeV,

c(−1,0)
8 = −7.2,

c(−1,0)
27 = 2.1. (B3)

g(−2,1/2)
8 = 618 MeV,

m(−2,1/2)
8 = 1599 MeV,

c(−2,1.2)
8 = −16.2,

g(−2,1/2)
10 = 1725 MeV,

m(−2,1/2)
10 = 1972 MeV,

c(−2,1.2)
10 = 5.7,

c(−2,1.2)
27 = 1.5,

c(−2,1.2)
35 = 3.2. (B4)

g(0,3/2)
8 = 982 MeV,

m(0,3/2)
8 = 1411 MeV,

c(0,3/2)
8 = −1.5,

c(0,3/2)
27 = −85.6,

c(0,3/2)

35 = −1.9. (B5)

g(−3,0)
10 = 1499 MeV,

m(−3,0)
10 = 1860 MeV,

c(−3,0)
10 = −4.5,

c(−3,0)
35 = −3.6. (B6)
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