001027452 001__ 1027452
001027452 005__ 20250203103444.0
001027452 0247_ $$2doi$$a10.1016/j.radphyschem.2023.110996
001027452 0247_ $$2ISSN$$a0969-806X
001027452 0247_ $$2ISSN$$a1359-0197
001027452 0247_ $$2ISSN$$a1878-1020
001027452 0247_ $$2ISSN$$a1879-0895
001027452 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03862
001027452 0247_ $$2WOS$$aWOS:001005119900001
001027452 037__ $$aFZJ-2024-03862
001027452 082__ $$a530
001027452 1001_ $$00000-0003-2340-1782$$aAmjed, N.$$b0$$eCorresponding author
001027452 245__ $$aEvaluation of cross section data for the low and medium energy cyclotron production of the non-standard positron emitting radionuclide 90Nb
001027452 260__ $$aNew York$$bPergamon Press$$c2023
001027452 3367_ $$2DRIVER$$aarticle
001027452 3367_ $$2DataCite$$aOutput Types/Journal article
001027452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718949133_4300
001027452 3367_ $$2BibTeX$$aARTICLE
001027452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001027452 3367_ $$00$$2EndNote$$aJournal Article
001027452 520__ $$aThe radionuclide 90Nb (T1/2 = 14.6 h) is a promising non-standard β+-emitter, with potential for use in ImmunoPET. Its production was studied using 90Zr, 91Zr, 93Nb and 89Y targets. Experimental excitation functions of the reactions 90Zr(p,n)90Nb, 91Zr(p,2n)90Nb, 90Zr(d,2n)90Nb, 93Nb(p,4n)90Mo(→90Nb) and 89Y(α,3n)90Nb were critically analyzed. The nuclear model codes TALYS 1.9, ALICE-IPPE, and EMPIRE 3.2 were employed to check the consistency and reliability of the experimental data. A well-developed methodology, based on the experimental data and the results of theoretical nuclear models, was used to calculate the recommended data for each excitation function. The same was done for reactions leading to possible radioisotopic impurities. By using the recommended/reference data, thick target yields were calculated for each production route and its corresponding impurity reactions. After a careful analysis and comparison of all production routes, it is concluded that the 90Zr(p,n)90Nb reaction is better for low energy cyclotrons (20 → 5 MeV), and the 91Zr(p,2n)90Nb and 90Zr (d,2n)90Nb reactions are suitable for medium energy cyclotrons (30 → 12 MeV). The routes93Nb(p,4n)90Mo→90Nb and 89Y(α,3n)90Nb are suitable for high energy cyclotrons (80 → 31 MeV). For each of these production routes, an optimum energy range is suggested. The recommended results for 90Zr(p,n)90Nb and 91Zr (p,2n)90Nb reactions were validated by comparison with the data for th
001027452 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001027452 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001027452 7001_ $$0P:(DE-HGF)0$$aNaz, Ahmad$$b1
001027452 7001_ $$0P:(DE-HGF)0$$aWajid, A. M.$$b2
001027452 7001_ $$0P:(DE-Juel1)196906$$aHussain, M.$$b3
001027452 7001_ $$0P:(DE-Juel1)131840$$aQaim, S. M.$$b4
001027452 773__ $$0PERI:(DE-600)3161238-6$$a10.1016/j.radphyschem.2023.110996$$gVol. 209, p. 110996 -$$p110996$$tInternational journal of radiation, applications and instrumentation / Part C$$v209$$x0969-806X$$y2023
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/1-s2.0-S0969806X23002414-main.pdf$$yRestricted
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/Nb-90%20Manuscript%20Qaim.pdf$$yPublished on 2023-04-29. Available in OpenAccess from 2024-04-29.$$zStatID:(DE-HGF)0510
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/1-s2.0-S0969806X23002414-main.gif?subformat=icon$$xicon$$yRestricted
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/1-s2.0-S0969806X23002414-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/1-s2.0-S0969806X23002414-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/1-s2.0-S0969806X23002414-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/Nb-90%20Manuscript%20Qaim.gif?subformat=icon$$xicon$$yPublished on 2023-04-29. Available in OpenAccess from 2024-04-29.$$zStatID:(DE-HGF)0510
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/Nb-90%20Manuscript%20Qaim.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-04-29. Available in OpenAccess from 2024-04-29.$$zStatID:(DE-HGF)0510
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/Nb-90%20Manuscript%20Qaim.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-04-29. Available in OpenAccess from 2024-04-29.$$zStatID:(DE-HGF)0510
001027452 8564_ $$uhttps://juser.fz-juelich.de/record/1027452/files/Nb-90%20Manuscript%20Qaim.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-04-29. Available in OpenAccess from 2024-04-29.$$zStatID:(DE-HGF)0510
001027452 909CO $$ooai:juser.fz-juelich.de:1027452$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001027452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196906$$aForschungszentrum Jülich$$b3$$kFZJ
001027452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131840$$aForschungszentrum Jülich$$b4$$kFZJ
001027452 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001027452 9141_ $$y2024
001027452 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001027452 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001027452 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001027452 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIAT PHYS CHEM : 2022$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001027452 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-27$$wger
001027452 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001027452 920__ $$lyes
001027452 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001027452 980__ $$ajournal
001027452 980__ $$aVDB
001027452 980__ $$aUNRESTRICTED
001027452 980__ $$aI:(DE-Juel1)INM-5-20090406
001027452 9801_ $$aFullTexts