001027551 001__ 1027551
001027551 005__ 20240715202025.0
001027551 037__ $$aFZJ-2024-03954
001027551 041__ $$aEnglish
001027551 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
001027551 1112_ $$a37th Topical meeting of the International Society of Electrochemistry$$cStresa$$d2024-06-09 - 2024-06-12$$wItaly
001027551 245__ $$aManufacturing of Solid-State Batteries meets Thermodynamics – Uncovering of novel phases, and their impact on future experimental and theoretical work
001027551 260__ $$c2024
001027551 3367_ $$033$$2EndNote$$aConference Paper
001027551 3367_ $$2DataCite$$aOther
001027551 3367_ $$2BibTeX$$aINPROCEEDINGS
001027551 3367_ $$2DRIVER$$aconferenceObject
001027551 3367_ $$2ORCID$$aLECTURE_SPEECH
001027551 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1721034855_14182$$xAfter Call
001027551 520__ $$aSolid-state batteries benefit from their stability against metal anodes like elementary lithium and their enhanced safety due to their more stable ceramic or glass-like electrolytes compared to the state-of-the-art Lithium ion technology. The feasibility of successful processing of such materials with high-capacity cathode material is crucial for innovation. This presentation comprises a systematic and comprehensive study of a combination of the cathode active materials LiNi1/3Mn1/3Co1/3O2 (NMC111), LiNi0.6Mn0.2Co0.2O2 (NMC622), LiNi0.8Mn0.1Co0.1O2 (NMC811), and LiNi0.8Co0.15Al0.05O2 (NCA) with a garnet solid electrolyte Li6.45La3Zr1.6Ta0.4Al0.05O12 as an example, highlighting the challenges of manufacturing as well as the thermodynamic stability limits. In comparison to prior studies on such approaches, additional phases were detected, which had not been taken into consideration in previously published work. Essentially, these phases were identified for the first time by combining multiple analysis techniques like X-ray diffraction, Raman spectroscopy and microstructural and elemental analysis. As an outlook, strategies how to circumvent secondary phase formation thus resulting in improved functional battery cells, as well as the impact of novel phases on computational simulation including artificial intelligence (AI) approaches are discussed.
001027551 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001027551 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001027551 588__ $$aDataset connected to DataCite
001027551 7001_ $$0P:(DE-Juel1)177016$$aRoitzheim, Christoph$$b1$$ufzj
001027551 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b2$$ufzj
001027551 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$ufzj
001027551 7001_ $$0P:(DE-Juel1)178008$$aScheld, Walter Sebastian$$b4$$ufzj
001027551 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b5$$ufzj
001027551 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
001027551 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7$$ufzj
001027551 909CO $$ooai:juser.fz-juelich.de:1027551$$pVDB
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b0$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177016$$aForschungszentrum Jülich$$b1$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b2$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b3$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178008$$aForschungszentrum Jülich$$b4$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b5$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
001027551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
001027551 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001027551 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001027551 9141_ $$y2024
001027551 920__ $$lyes
001027551 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001027551 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
001027551 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x2
001027551 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x3
001027551 980__ $$aconf
001027551 980__ $$aVDB
001027551 980__ $$aI:(DE-Juel1)IEK-1-20101013
001027551 980__ $$aI:(DE-Juel1)IEK-12-20141217
001027551 980__ $$aI:(DE-Juel1)IMD-2-20101013
001027551 980__ $$aI:(DE-82)080011_20140620
001027551 980__ $$aUNRESTRICTED
001027551 981__ $$aI:(DE-Juel1)IMD-4-20141217