Home > Publications database > Manufacturing of Solid-State Batteries meets Thermodynamics – Uncovering of novel phases, and their impact on future experimental and theoretical work > print |
001 | 1027551 | ||
005 | 20240715202025.0 | ||
037 | _ | _ | |a FZJ-2024-03954 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Uhlenbruck, Sven |0 P:(DE-Juel1)129580 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 37th Topical meeting of the International Society of Electrochemistry |c Stresa |d 2024-06-09 - 2024-06-12 |w Italy |
245 | _ | _ | |a Manufacturing of Solid-State Batteries meets Thermodynamics – Uncovering of novel phases, and their impact on future experimental and theoretical work |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1721034855_14182 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Solid-state batteries benefit from their stability against metal anodes like elementary lithium and their enhanced safety due to their more stable ceramic or glass-like electrolytes compared to the state-of-the-art Lithium ion technology. The feasibility of successful processing of such materials with high-capacity cathode material is crucial for innovation. This presentation comprises a systematic and comprehensive study of a combination of the cathode active materials LiNi1/3Mn1/3Co1/3O2 (NMC111), LiNi0.6Mn0.2Co0.2O2 (NMC622), LiNi0.8Mn0.1Co0.1O2 (NMC811), and LiNi0.8Co0.15Al0.05O2 (NCA) with a garnet solid electrolyte Li6.45La3Zr1.6Ta0.4Al0.05O12 as an example, highlighting the challenges of manufacturing as well as the thermodynamic stability limits. In comparison to prior studies on such approaches, additional phases were detected, which had not been taken into consideration in previously published work. Essentially, these phases were identified for the first time by combining multiple analysis techniques like X-ray diffraction, Raman spectroscopy and microstructural and elemental analysis. As an outlook, strategies how to circumvent secondary phase formation thus resulting in improved functional battery cells, as well as the impact of novel phases on computational simulation including artificial intelligence (AI) approaches are discussed. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Roitzheim, Christoph |0 P:(DE-Juel1)177016 |b 1 |u fzj |
700 | 1 | _ | |a Sohn, Yoo Jung |0 P:(DE-Juel1)159368 |b 2 |u fzj |
700 | 1 | _ | |a Sebold, Doris |0 P:(DE-Juel1)129662 |b 3 |u fzj |
700 | 1 | _ | |a Scheld, Walter Sebastian |0 P:(DE-Juel1)178008 |b 4 |u fzj |
700 | 1 | _ | |a Finsterbusch, Martin |0 P:(DE-Juel1)145623 |b 5 |u fzj |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 6 |u fzj |
700 | 1 | _ | |a Fattakhova-Rohlfing, Dina |0 P:(DE-Juel1)171780 |b 7 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1027551 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129580 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)177016 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)159368 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129662 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)178008 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145623 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171780 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-2-20101013 |k IMD-2 |l Werkstoffsynthese und Herstellungsverfahren |x 2 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 3 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|