001     1027551
005     20240715202025.0
037 _ _ |a FZJ-2024-03954
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 37th Topical meeting of the International Society of Electrochemistry
|c Stresa
|d 2024-06-09 - 2024-06-12
|w Italy
245 _ _ |a Manufacturing of Solid-State Batteries meets Thermodynamics – Uncovering of novel phases, and their impact on future experimental and theoretical work
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1721034855_14182
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Solid-state batteries benefit from their stability against metal anodes like elementary lithium and their enhanced safety due to their more stable ceramic or glass-like electrolytes compared to the state-of-the-art Lithium ion technology. The feasibility of successful processing of such materials with high-capacity cathode material is crucial for innovation. This presentation comprises a systematic and comprehensive study of a combination of the cathode active materials LiNi1/3Mn1/3Co1/3O2 (NMC111), LiNi0.6Mn0.2Co0.2O2 (NMC622), LiNi0.8Mn0.1Co0.1O2 (NMC811), and LiNi0.8Co0.15Al0.05O2 (NCA) with a garnet solid electrolyte Li6.45La3Zr1.6Ta0.4Al0.05O12 as an example, highlighting the challenges of manufacturing as well as the thermodynamic stability limits. In comparison to prior studies on such approaches, additional phases were detected, which had not been taken into consideration in previously published work. Essentially, these phases were identified for the first time by combining multiple analysis techniques like X-ray diffraction, Raman spectroscopy and microstructural and elemental analysis. As an outlook, strategies how to circumvent secondary phase formation thus resulting in improved functional battery cells, as well as the impact of novel phases on computational simulation including artificial intelligence (AI) approaches are discussed.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Roitzheim, Christoph
|0 P:(DE-Juel1)177016
|b 1
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
|u fzj
700 1 _ |a Scheld, Walter Sebastian
|0 P:(DE-Juel1)178008
|b 4
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 5
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:1027551
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177016
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178008
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 2
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21