001027692 001__ 1027692
001027692 005__ 20240624202013.0
001027692 0247_ $$2doi$$a10.1016/S0969-8051(22)00096-8
001027692 0247_ $$2ISSN$$a0969-8051
001027692 0247_ $$2ISSN$$a1872-9614
001027692 037__ $$aFZJ-2024-04004
001027692 041__ $$aEnglish
001027692 082__ $$a570
001027692 1001_ $$0P:(DE-Juel1)131824$$aHolschbach, Marcus$$b0$$ufzj
001027692 1112_ $$a24th International Symposium on Radiopharmaceutical Sciences$$cNantes$$d2022-05-29 - 2022-06-03$$gISRS2022$$wFrance
001027692 245__ $$a8-Bicycloalkyl-CPFPX derivatives as potent and selective tools for PET imaging of the A1 adenosine receptor
001027692 260__ $$c2022
001027692 3367_ $$033$$2EndNote$$aConference Paper
001027692 3367_ $$2DataCite$$aOther
001027692 3367_ $$2BibTeX$$aINPROCEEDINGS
001027692 3367_ $$2DRIVER$$aconferenceObject
001027692 3367_ $$2ORCID$$aLECTURE_SPEECH
001027692 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1719202479_3990$$xAfter Call
001027692 520__ $$aObjectives: The first successful in-house development [1] ofa radiofluorinated A 1 adenosine receptor (A1AR) antagonist withnanomolar affinity for the bovine A 1 AR for in vivo PET studies was8-cyclopentyl-3-(3-[ 18 F]Fluoropropyl)-1-propyl-xanthine, [ 18 F]CPFPX. Although this ligand proved to be useful in vivo in rodents,already first preclinical studies revealed possible limitations for PETimaging. At the beginning our efforts aimed at synthesizing metabol-ically stabilized CPFPX derivatives, but the recently published findingby Schneider et al. [2] that affinity is the key pharmacokinetic deter-minant of radiolabeled xanthines in the brain prompted us to focusour efforts on the synthesis of A1AR ligands with high affinity.Methods: In search of CPFPX-like A1AR ligands with higher targetaffinity, we decided to replace the cyclopentyl residue in the 8-posi-tion of the xanthine backbone with sterically more demanding nor-bornyl residues [3]. The target xanthines and the radiofluorinationprecursors (sulfonates) were synthesized through multistep syn-theses by a modified Traube protocol [4]. Binding experiments wereperformed with membranes from CHO K1 cells stably transfectedwith either the human A1 or A2AAR. Nucleophilic radiofluorinationon the n.c.a level used the classical Kryptofix™ 2.2.2/K 2 CO 3 method.For in vitro autoradiography, frozen horizontal sections (20 μm) of ratbrains were used.Results: From a series of newly synthesized compounds 1-NBXhas emerged as the most potent and selective candidate (Figure 1).The norbornyl group has two surfaces, one being essentially a cyclo-pentyl ring backed by a two-carbon bridge and the other being acyclohexyl ring backed by a one-carbon bridge. The greater potencyof 1-NBX relative to the 2- and 7-norbornyl isomers probably occursbecause 1-NBX binds to the receptor with its cyclopentyl surfacefacing the receptor, whereas the 2- and 7-isomers are forced to bindwith the less favorable cyclohexyl ring facing the receptor.Cyclopentane exists mainly in an “envelope” conformation, in whichfour of the carbons form the corners of a flat envelope, and the fifthcarbon represents the apex of a triangular flap, which projects at anangle of about 120° from the body of the envelope [5, 6]. Althoughany of the carbons can take the out-of-plane position in cyclopen-tane, in norbornane the bridging carbon is locked in this position.The greater affinity of 1-NBX compared to that of CPFPX is mostlikely due to the former being locked in the optimal conformation. Asexpected from earlier studies, 1-propyl and 3-fluoropropylsubstitution at both 1- and 3-positions of the xanthine scaffold wasoptimum to potent and selective A1AR antagonism.#Conclusions: [ 18 F]1-NBX seems to be a promising A1AR antagonisttracer suitable for PET. Future preclinical studies will reveal weather1 NBX will have the potential to serve as a substitute for [ 18 F]CPFPX.References:[1] Holschbach et al., J Med Chem. 2002, 45(23), 5150-5156.[2] Schneider et al., Nucl Med Biol. 2020, 82-83, 1-8.[3] Shimada et al., J Med Chem. 1992, 35, 924-930.[4] Holschbach et al., Org Lett. 2009, 11, 4266-4269.[5] Dragojlovic V., ChemTexts 2015, 1, 14.[6] Trivedi et al., J Med Chem 1989, 32, 8-11
001027692 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001027692 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001027692 7001_ $$0P:(DE-Juel1)132740$$aHumpert, Swen$$b1$$eCorresponding author$$ufzj
001027692 7001_ $$0P:(DE-Juel1)156407$$aSchneider, Daniela$$b2$$ufzj
001027692 7001_ $$0P:(DE-Juel1)131847$$aSchulze, Annette$$b3$$ufzj
001027692 7001_ $$0P:(DE-Juel1)131810$$aBier, Dirk$$b4$$ufzj
001027692 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b5$$ufzj
001027692 773__ $$0PERI:(DE-600)1498538-X$$a10.1016/S0969-8051(22)00096-8$$gVol. 108-109, p. S26 - S27$$x0969-8051$$y2022
001027692 8564_ $$uhttps://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.pdf$$yRestricted
001027692 8564_ $$uhttps://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.gif?subformat=icon$$xicon$$yRestricted
001027692 8564_ $$uhttps://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001027692 8564_ $$uhttps://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
001027692 8564_ $$uhttps://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
001027692 909CO $$ooai:juser.fz-juelich.de:1027692$$pVDB
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131824$$aForschungszentrum Jülich$$b0$$kFZJ
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132740$$aForschungszentrum Jülich$$b1$$kFZJ
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156407$$aForschungszentrum Jülich$$b2$$kFZJ
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131847$$aForschungszentrum Jülich$$b3$$kFZJ
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131810$$aForschungszentrum Jülich$$b4$$kFZJ
001027692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b5$$kFZJ
001027692 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001027692 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001027692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL MED BIOL : 2022$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001027692 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001027692 920__ $$lyes
001027692 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001027692 980__ $$aconf
001027692 980__ $$aVDB
001027692 980__ $$aI:(DE-Juel1)INM-5-20090406
001027692 980__ $$aUNRESTRICTED