001     1027692
005     20240624202013.0
024 7 _ |a 10.1016/S0969-8051(22)00096-8
|2 doi
024 7 _ |a 0969-8051
|2 ISSN
024 7 _ |a 1872-9614
|2 ISSN
037 _ _ |a FZJ-2024-04004
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Holschbach, Marcus
|0 P:(DE-Juel1)131824
|b 0
|u fzj
111 2 _ |a 24th International Symposium on Radiopharmaceutical Sciences
|g ISRS2022
|c Nantes
|d 2022-05-29 - 2022-06-03
|w France
245 _ _ |a 8-Bicycloalkyl-CPFPX derivatives as potent and selective tools for PET imaging of the A1 adenosine receptor
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1719202479_3990
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Objectives: The first successful in-house development [1] ofa radiofluorinated A 1 adenosine receptor (A1AR) antagonist withnanomolar affinity for the bovine A 1 AR for in vivo PET studies was8-cyclopentyl-3-(3-[ 18 F]Fluoropropyl)-1-propyl-xanthine, [ 18 F]CPFPX. Although this ligand proved to be useful in vivo in rodents,already first preclinical studies revealed possible limitations for PETimaging. At the beginning our efforts aimed at synthesizing metabol-ically stabilized CPFPX derivatives, but the recently published findingby Schneider et al. [2] that affinity is the key pharmacokinetic deter-minant of radiolabeled xanthines in the brain prompted us to focusour efforts on the synthesis of A1AR ligands with high affinity.Methods: In search of CPFPX-like A1AR ligands with higher targetaffinity, we decided to replace the cyclopentyl residue in the 8-posi-tion of the xanthine backbone with sterically more demanding nor-bornyl residues [3]. The target xanthines and the radiofluorinationprecursors (sulfonates) were synthesized through multistep syn-theses by a modified Traube protocol [4]. Binding experiments wereperformed with membranes from CHO K1 cells stably transfectedwith either the human A1 or A2AAR. Nucleophilic radiofluorinationon the n.c.a level used the classical Kryptofix™ 2.2.2/K 2 CO 3 method.For in vitro autoradiography, frozen horizontal sections (20 μm) of ratbrains were used.Results: From a series of newly synthesized compounds 1-NBXhas emerged as the most potent and selective candidate (Figure 1).The norbornyl group has two surfaces, one being essentially a cyclo-pentyl ring backed by a two-carbon bridge and the other being acyclohexyl ring backed by a one-carbon bridge. The greater potencyof 1-NBX relative to the 2- and 7-norbornyl isomers probably occursbecause 1-NBX binds to the receptor with its cyclopentyl surfacefacing the receptor, whereas the 2- and 7-isomers are forced to bindwith the less favorable cyclohexyl ring facing the receptor.Cyclopentane exists mainly in an “envelope” conformation, in whichfour of the carbons form the corners of a flat envelope, and the fifthcarbon represents the apex of a triangular flap, which projects at anangle of about 120° from the body of the envelope [5, 6]. Althoughany of the carbons can take the out-of-plane position in cyclopen-tane, in norbornane the bridging carbon is locked in this position.The greater affinity of 1-NBX compared to that of CPFPX is mostlikely due to the former being locked in the optimal conformation. Asexpected from earlier studies, 1-propyl and 3-fluoropropylsubstitution at both 1- and 3-positions of the xanthine scaffold wasoptimum to potent and selective A1AR antagonism.#Conclusions: [ 18 F]1-NBX seems to be a promising A1AR antagonisttracer suitable for PET. Future preclinical studies will reveal weather1 NBX will have the potential to serve as a substitute for [ 18 F]CPFPX.References:[1] Holschbach et al., J Med Chem. 2002, 45(23), 5150-5156.[2] Schneider et al., Nucl Med Biol. 2020, 82-83, 1-8.[3] Shimada et al., J Med Chem. 1992, 35, 924-930.[4] Holschbach et al., Org Lett. 2009, 11, 4266-4269.[5] Dragojlovic V., ChemTexts 2015, 1, 14.[6] Trivedi et al., J Med Chem 1989, 32, 8-11
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Humpert, Swen
|0 P:(DE-Juel1)132740
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Schneider, Daniela
|0 P:(DE-Juel1)156407
|b 2
|u fzj
700 1 _ |a Schulze, Annette
|0 P:(DE-Juel1)131847
|b 3
|u fzj
700 1 _ |a Bier, Dirk
|0 P:(DE-Juel1)131810
|b 4
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 5
|u fzj
773 _ _ |a 10.1016/S0969-8051(22)00096-8
|0 PERI:(DE-600)1498538-X
|y 2022
|g Vol. 108-109, p. S26 - S27
|x 0969-8051
856 4 _ |u https://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027692/files/1-s2.0-S0969805122000968-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1027692
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132740
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166419
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL MED BIOL : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21