001027700 001__ 1027700
001027700 005__ 20240625201957.0
001027700 0247_ $$2doi$$a10.1016/S0969-8051(22)00233-5
001027700 0247_ $$2ISSN$$a0969-8051
001027700 0247_ $$2ISSN$$a1872-9614
001027700 037__ $$aFZJ-2024-04010
001027700 041__ $$aEnglish
001027700 082__ $$a570
001027700 1001_ $$0P:(DE-Juel1)156407$$aSchneider, Daniela$$b0
001027700 1112_ $$a24th International Symposium on Radiopharmaceutical Sciences$$cNantes$$d2022-05-29 - 2022-06-03$$gISRS2022$$wFrance
001027700 245__ $$aEvaluation of a multifunctional blood-brain barrier co-culture model prepared from rat primary brain endothelial cells and astrocytes: first results
001027700 260__ $$c2022
001027700 3367_ $$033$$2EndNote$$aConference Paper
001027700 3367_ $$2DataCite$$aOther
001027700 3367_ $$2BibTeX$$aINPROCEEDINGS
001027700 3367_ $$2DRIVER$$aconferenceObject
001027700 3367_ $$2ORCID$$aLECTURE_SPEECH
001027700 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1719304033_5771$$xAfter Call
001027700 520__ $$aObjectives: The potential of a rodent endothelial cell/astrocyteco-culture BBB model to predict in vivo brain exposure ofCNS radiotracers was evaluated using three 18F-labeled xanthine-derived positron emission tomography (PET) tracers foradenosine A1 receptor (A1AR) imaging, namely 8-cyclopentyl-3-(3-[18F]Fluoropropyl)-1-propylxanthine ([18F]CPFPX [1,2]), 8-cyclobutyl-3-(3-[18F]Fluoropropyl)-1-propylxanthine ([18F]CBX [3]), and3-(3-[18F]Fluoropropyl)-8-(1-methylcyclobutyl)-1-propylxanthine([18F]MCBX [3]).Methods: Primary rat brain astrocytes (4x104 cells) and primaryrat brain microvascular endothelial cells (BECs, 2x104 cells) wereplated on opposite sides of a polycarbonate Transwell membrane(pore size 3.0 m) and cultured at 37°C in a 5% CO2 atmosphere for4 days [4]. Integrity of the endothelial cell layer was assessed bytransendothelial electrical resistance (TEER) measurements. Forpermeability testing, the radiolabeled compounds (185 kBq/ml)were added to the donor chamber (apical compartment), and theirappearance in the receiver chamber (basolateral compartment) wasmonitored with a gamma counter to calculate apparent permeabilities(Papp). Papp values of the xanthines were compared to Pin vivo valuesderived from PET kinetic modeling data [5]. Additional experimentswere conducted to investigate the influence of test compound concentrationand addition of albumin on Papp values.Results: Figure 1 displays time dependent permeation of [18F]CPFPX, [18F]CBX, and [18F]MCBX across the model BBB. Calculated Pappvalues and the corresponding Pin vivo values obtained from PET measurementsare listed in Table 1. Papp values proved to be highly predictivefor in vivo brain penetration. Permeability rankings in vivo andin vitro were comparable ([18F]MCBX > [18F]CBX≈[18F]CPFPX).Papp values of [18F]CPFPX did not show concentration dependence,indicating that passage of the compound through the BBB proceedssolely via transmembrane diffusion without involvement of saturabletransport mechanism. However, addition of bovine serumalbumin (30 mg/ml, corresponding to a free ligand concentration of7%) significantly lowered Papp of [18F]CPFPX by about 30%, which isconsistent with the free drug hypothesis.Conclusions: This first study demonstrates a strong agreementbetween in vitro cell-based permeability data and in vivo brain penetrationmeasured by PET. If these results can be confirmed withother classes of molecules that exhibit different transport characteristicsat the BBB (e.g., P-glycoprotein substrates), the BBB modeldescribed here should prove valuable for the development of novelCNS radiotracers.Acknowledgments: We thank Prof. Dr. Dieter Willbold andDominik Honold from the Institute of Structural Biochemistry (IBI-7)at FZJ for their valuable support.References:[1] Holschbach et al., J Med Chem. 2002, 45(23), 5150-5156.[2] Bauer et al., J Nucl Med. 2003, 44(10), 1682-1689.[3] Schneider et al., Pharmaceuticals. 2019, 12(2), 57.[4] Niego et al., J Vis Exp. 2013, 81, e50934.[5] Schneider et al., Nucl Med Biol. 2020, 82-83, 1-8.
001027700 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001027700 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001027700 7001_ $$0P:(DE-Juel1)131847$$aSchulze, Annette$$b1
001027700 7001_ $$0P:(DE-Juel1)132740$$aHumpert, Swen$$b2$$eCorresponding author
001027700 7001_ $$0P:(DE-Juel1)131824$$aHolschbach, Marcus$$b3
001027700 7001_ $$0P:(DE-Juel1)131810$$aBier, Dirk$$b4
001027700 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b5
001027700 773__ $$0PERI:(DE-600)1498538-X$$a10.1016/S0969-8051(22)00233-5$$gVol. 108-109, p. S102 - S103$$x0969-8051$$y2022
001027700 8564_ $$uhttps://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.pdf$$yRestricted
001027700 8564_ $$uhttps://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.gif?subformat=icon$$xicon$$yRestricted
001027700 8564_ $$uhttps://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001027700 8564_ $$uhttps://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
001027700 8564_ $$uhttps://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
001027700 909CO $$ooai:juser.fz-juelich.de:1027700$$pVDB
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156407$$aForschungszentrum Jülich$$b0$$kFZJ
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131847$$aForschungszentrum Jülich$$b1$$kFZJ
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132740$$aForschungszentrum Jülich$$b2$$kFZJ
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131824$$aForschungszentrum Jülich$$b3$$kFZJ
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131810$$aForschungszentrum Jülich$$b4$$kFZJ
001027700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b5$$kFZJ
001027700 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001027700 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001027700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL MED BIOL : 2022$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001027700 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001027700 920__ $$lyes
001027700 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001027700 980__ $$aconf
001027700 980__ $$aVDB
001027700 980__ $$aI:(DE-Juel1)INM-5-20090406
001027700 980__ $$aUNRESTRICTED