001     1027700
005     20240625201957.0
024 7 _ |a 10.1016/S0969-8051(22)00233-5
|2 doi
024 7 _ |a 0969-8051
|2 ISSN
024 7 _ |a 1872-9614
|2 ISSN
037 _ _ |a FZJ-2024-04010
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schneider, Daniela
|0 P:(DE-Juel1)156407
|b 0
111 2 _ |a 24th International Symposium on Radiopharmaceutical Sciences
|g ISRS2022
|c Nantes
|d 2022-05-29 - 2022-06-03
|w France
245 _ _ |a Evaluation of a multifunctional blood-brain barrier co-culture model prepared from rat primary brain endothelial cells and astrocytes: first results
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1719304033_5771
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Objectives: The potential of a rodent endothelial cell/astrocyteco-culture BBB model to predict in vivo brain exposure ofCNS radiotracers was evaluated using three 18F-labeled xanthine-derived positron emission tomography (PET) tracers foradenosine A1 receptor (A1AR) imaging, namely 8-cyclopentyl-3-(3-[18F]Fluoropropyl)-1-propylxanthine ([18F]CPFPX [1,2]), 8-cyclobutyl-3-(3-[18F]Fluoropropyl)-1-propylxanthine ([18F]CBX [3]), and3-(3-[18F]Fluoropropyl)-8-(1-methylcyclobutyl)-1-propylxanthine([18F]MCBX [3]).Methods: Primary rat brain astrocytes (4x104 cells) and primaryrat brain microvascular endothelial cells (BECs, 2x104 cells) wereplated on opposite sides of a polycarbonate Transwell membrane(pore size 3.0 m) and cultured at 37°C in a 5% CO2 atmosphere for4 days [4]. Integrity of the endothelial cell layer was assessed bytransendothelial electrical resistance (TEER) measurements. Forpermeability testing, the radiolabeled compounds (185 kBq/ml)were added to the donor chamber (apical compartment), and theirappearance in the receiver chamber (basolateral compartment) wasmonitored with a gamma counter to calculate apparent permeabilities(Papp). Papp values of the xanthines were compared to Pin vivo valuesderived from PET kinetic modeling data [5]. Additional experimentswere conducted to investigate the influence of test compound concentrationand addition of albumin on Papp values.Results: Figure 1 displays time dependent permeation of [18F]CPFPX, [18F]CBX, and [18F]MCBX across the model BBB. Calculated Pappvalues and the corresponding Pin vivo values obtained from PET measurementsare listed in Table 1. Papp values proved to be highly predictivefor in vivo brain penetration. Permeability rankings in vivo andin vitro were comparable ([18F]MCBX > [18F]CBX≈[18F]CPFPX).Papp values of [18F]CPFPX did not show concentration dependence,indicating that passage of the compound through the BBB proceedssolely via transmembrane diffusion without involvement of saturabletransport mechanism. However, addition of bovine serumalbumin (30 mg/ml, corresponding to a free ligand concentration of7%) significantly lowered Papp of [18F]CPFPX by about 30%, which isconsistent with the free drug hypothesis.Conclusions: This first study demonstrates a strong agreementbetween in vitro cell-based permeability data and in vivo brain penetrationmeasured by PET. If these results can be confirmed withother classes of molecules that exhibit different transport characteristicsat the BBB (e.g., P-glycoprotein substrates), the BBB modeldescribed here should prove valuable for the development of novelCNS radiotracers.Acknowledgments: We thank Prof. Dr. Dieter Willbold andDominik Honold from the Institute of Structural Biochemistry (IBI-7)at FZJ for their valuable support.References:[1] Holschbach et al., J Med Chem. 2002, 45(23), 5150-5156.[2] Bauer et al., J Nucl Med. 2003, 44(10), 1682-1689.[3] Schneider et al., Pharmaceuticals. 2019, 12(2), 57.[4] Niego et al., J Vis Exp. 2013, 81, e50934.[5] Schneider et al., Nucl Med Biol. 2020, 82-83, 1-8.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schulze, Annette
|0 P:(DE-Juel1)131847
|b 1
700 1 _ |a Humpert, Swen
|0 P:(DE-Juel1)132740
|b 2
|e Corresponding author
700 1 _ |a Holschbach, Marcus
|0 P:(DE-Juel1)131824
|b 3
700 1 _ |a Bier, Dirk
|0 P:(DE-Juel1)131810
|b 4
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 5
773 _ _ |a 10.1016/S0969-8051(22)00233-5
|0 PERI:(DE-600)1498538-X
|y 2022
|g Vol. 108-109, p. S102 - S103
|x 0969-8051
856 4 _ |u https://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1027700/files/1-s2.0-S0969805122002335-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1027700
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132740
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166419
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL MED BIOL : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21