001027703 001__ 1027703
001027703 005__ 20240626202012.0
001027703 0247_ $$2doi$$a10.1055/s-0042-1746135
001027703 037__ $$aFZJ-2024-04013
001027703 041__ $$aGerman
001027703 1001_ $$0P:(DE-HGF)0$$aVon Eugen, K.$$b0$$eCorresponding author
001027703 1112_ $$a60. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin$$cLeipzig$$d2022-04-27 - 2022-04-30$$wGermany
001027703 245__ $$aAvian neurons consume three times less glucose compared to mammals
001027703 260__ $$c2022
001027703 3367_ $$033$$2EndNote$$aConference Paper
001027703 3367_ $$2DataCite$$aOther
001027703 3367_ $$2BibTeX$$aINPROCEEDINGS
001027703 3367_ $$2DRIVER$$aconferenceObject
001027703 3367_ $$2ORCID$$aLECTURE_SPEECH
001027703 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1719377997_21519$$xAfter Call
001027703 520__ $$aZiel/Aim Brains are some of the most energetically costly tissues of the mammalianbody. This is predominantly caused by expensive neurons with highglucose demands. Across mammals, there appears to be a fixed neuronal energybudget and it is thought this posed an evolutionary constraint on braingrowth. Recently it was found birds have higher numbers of neurons comparedto similarly sized mammals. We set out to determine the neuronal energy budgetof birds to elucidate how they can metabolically support such high numbersof neurons.Methodik/Methods We estimated glucose metabolism with positron emissiontomography (PET) and 2-F-18-fluoro-2-deoxyglucose (FDG) as radiotracerin awake and anesthetized pigeons. Combined with kinetic modelling, this allowsto quantify the exact cerebral metabolic rate of glucose consumption(CMRglc).Ergebnisse/Results We found that neural tissue in the pigeon consumes27.29 ± 1.57 μmol glucose per 100 g per min in awake state and 23.15 ± 4.77μmol glucose per 100 g per min in anesthetized state. For the awake pigeon,this translates into a surprisingly low neuronal energy budget of 1.86 x 10-9 ± 0.2x 10-9 μmol glucose per neuron per minute, being approximately 3 times lowercompared to the average mammalian neuron.Schlussfolgerungen/Conclusions The low neuronal energy budget explainshow pigeons, and possibly other avian species, can support such high numbersof neurons without the associated metabolic costs nor compromising on neuronalsignalling. The advantage in neuronal processing of information at ahigher efficiency possibly emerged within the distinct evolution of the avianbrain.
001027703 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001027703 588__ $$aDataset connected to CrossRef Conference
001027703 7001_ $$0P:(DE-Juel1)180330$$aEndepols, H.$$b1$$ufzj
001027703 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, A.$$b2$$ufzj
001027703 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, B.$$b3$$ufzj
001027703 7001_ $$0P:(DE-HGF)0$$aGüntürkün, O.$$b4
001027703 7001_ $$0P:(DE-Juel1)162520$$aBackes, H.$$b5
001027703 7001_ $$0P:(DE-HGF)0$$aStröckens, F.$$b6
001027703 773__ $$a10.1055/s-0042-1746135
001027703 909CO $$ooai:juser.fz-juelich.de:1027703$$pVDB
001027703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b1$$kFZJ
001027703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b2$$kFZJ
001027703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b3$$kFZJ
001027703 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001027703 920__ $$lyes
001027703 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001027703 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001027703 980__ $$aconf
001027703 980__ $$aVDB
001027703 980__ $$aI:(DE-Juel1)INM-5-20090406
001027703 980__ $$aI:(DE-Juel1)INM-2-20090406
001027703 980__ $$aUNRESTRICTED