001     1027703
005     20240626202012.0
024 7 _ |a 10.1055/s-0042-1746135
|2 doi
037 _ _ |a FZJ-2024-04013
041 _ _ |a German
100 1 _ |a Von Eugen, K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 60. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin
|c Leipzig
|d 2022-04-27 - 2022-04-30
|w Germany
245 _ _ |a Avian neurons consume three times less glucose compared to mammals
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1719377997_21519
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Ziel/Aim Brains are some of the most energetically costly tissues of the mammalianbody. This is predominantly caused by expensive neurons with highglucose demands. Across mammals, there appears to be a fixed neuronal energybudget and it is thought this posed an evolutionary constraint on braingrowth. Recently it was found birds have higher numbers of neurons comparedto similarly sized mammals. We set out to determine the neuronal energy budgetof birds to elucidate how they can metabolically support such high numbersof neurons.Methodik/Methods We estimated glucose metabolism with positron emissiontomography (PET) and 2-F-18-fluoro-2-deoxyglucose (FDG) as radiotracerin awake and anesthetized pigeons. Combined with kinetic modelling, this allowsto quantify the exact cerebral metabolic rate of glucose consumption(CMRglc).Ergebnisse/Results We found that neural tissue in the pigeon consumes27.29 ± 1.57 μmol glucose per 100 g per min in awake state and 23.15 ± 4.77μmol glucose per 100 g per min in anesthetized state. For the awake pigeon,this translates into a surprisingly low neuronal energy budget of 1.86 x 10-9 ± 0.2x 10-9 μmol glucose per neuron per minute, being approximately 3 times lowercompared to the average mammalian neuron.Schlussfolgerungen/Conclusions The low neuronal energy budget explainshow pigeons, and possibly other avian species, can support such high numbersof neurons without the associated metabolic costs nor compromising on neuronalsignalling. The advantage in neuronal processing of information at ahigher efficiency possibly emerged within the distinct evolution of the avianbrain.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Endepols, H.
|0 P:(DE-Juel1)180330
|b 1
|u fzj
700 1 _ |a Drzezga, A.
|0 P:(DE-Juel1)177611
|b 2
|u fzj
700 1 _ |a Neumaier, B.
|0 P:(DE-Juel1)166419
|b 3
|u fzj
700 1 _ |a Güntürkün, O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Backes, H.
|0 P:(DE-Juel1)162520
|b 5
700 1 _ |a Ströckens, F.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1055/s-0042-1746135
909 C O |o oai:juser.fz-juelich.de:1027703
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166419
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21