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Abstract − Sensor networks are an integral component of 

the ongoing automation of industrial processes in a diverse 

range of sectors. As sensors and, by extension, sensor 

networks provide information about physical quantities in the 

form of measurements, the development and adaptation of 

metrological practices that ensure the reliability, accuracy, 

and traceability of the data thus generated is essential. A 

complementary development of tools for the implementation 

of metrological methods is necessary. In this contribution we 

present a review of the tools and methods relevant to the 

automated application of metrological practices to large-scale 

transient sensor networks with an emphasis on uncertainty 

aware soft- and middleware, data fusion and machine 

learning. In this review, we will discuss the state-of-the-art 

with respect to general metrological methods and specific 

soft- and middleware tools and motivate future developments 

in sensor network metrology. 

Keywords: sensor networks; data fusion; machine 

learning; agent-based systems; metrology 

1. INTRODUCTION 

The deployment of interconnected sensors in large 

numbers as part of both homogeneous, i.e. measuring the 

same physical quantity, as well as heterogenous networks is 

a natural way to extend the utility of sensors and is of 

increasing importance in several domains. As sensor 

networks effectively function as distributed measurement 

systems, the development of metrological practices tailored 

to sensor networks is essential. Moreover, automation in both 

the application of the developed methods as well as in the 

analysis and processing of the typically large amount of data 

generated is essential to the functioning of large-scale sensor 

networks. In many real-world scenarios, transience, or 

changes in the network properties with time adds an 

additional layer of complexity. In this context, we aim to 

review tools and methods relevant to the automated 

application of metrological practices to large-scale transient 

sensor networks (i.e., changes of topology, availability, or 

placement of sensors in the network over time) with an 

emphasis on metrological conformity and uncertainty 

awareness in data evaluation, soft- and middleware, data 

fusion and machine learning.  

 

The review is divided into two sections. In the first, we 

focus on general methods relevant to sensor networks. In 

particular, we focus on the calibration using hybrid models as 

well as in-situ and co-calibration, i.e. a calibration based on 

measurement values of available sensors.  Thereafter, we will 

focus on data aggregation in sensor networks and uncertainty-

aware sensor fusion as a means to estimate physical quantities 

that are not amenable to direct measurement. Subsequently, 

we will provide a discussion of a key aspect of modern 

industrial processes – the leveraging of redundant 

information to obtain more accurate or robust estimates of 

observed quantities using data aggregation and fusion. Both 

model-based and deep learning methods will be covered 

based on their suitability to exploit the large amount of data 

generated by sensor networks in a metrologically consistent 

manner. Specific methods relevant to large-scale transient 

sensor networks such as online and federated learning as well 

as using redundancy to reduce measurement uncertainty will 

constitute this portion of the review. The section will be 

concluded with a discussion of the use of multi-agent systems 

in sensor networks – particularly their architecture and the 

advantages they provide. 

 

The second section will cover specific soft- and 

middleware tools relevant to sensor network metrology. 

Given the large number of commercial and open-source 

software packages and toolboxes for uncertainty evaluation, 

a thorough discussion on its automated implementation in 

sensor networks will be provided. In particular, the evaluation 

of dynamic measurement uncertainty and its real-time 

implementation in sensor networks will be reviewed. 

Subsequently, we will discuss the use of agentMET4FOF, a 

Python-based software framework to set up asynchronous 

agents with common features for distributed data streaming 

processes. General aspects regarding agent-architectures and 

the influence of network topology will inform the discussion. 

A concurrent review of methods relevant to distributed sensor 

networks will also be conducted. The middleware aspects of 

sensor networks will be covered based on the example of 

FIWARE – an open-source framework that provides a 

standardized approach to managing context information in a 

cross-domain and interoperable manner. The implementation 

of relevant protocols in ensuring interoperability will be 

covered simultaneously.                                        

2. REVIEW: METHODS 

In this section we cover recent developments in methods 

relevant to sensor networks with the aim of characterizing the 
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state-of-the-art and motivating future research in sensor 

network metrology. 

 

2.1 In-situ calibration and co-calibration 

Massive sensor network deployments, though now within 

economical and technical reach, present challenges with 

regard to their maintenance and reliability. In particular, 

reaching and then maintaining the targeted quality of 

measurements throughout the deployment duration is an 

important issue. Although it would be highly relevant given 

their tendency to drift due to premature aging, factory 

calibration is often prohibitively expensive for systematic 

application to low-cost sensors. Furthermore, there are 

concerns about the applicability of factory calibration to field 

conditions. These challenges have in turn fostered a 

considerable amount of research on in-situ calibration. In-situ 

calibration refers to the characterization of the measurement 

model of a deployed sensor and its uncertainty, i.e., its 

calibration at the location of its deployment without having to 

disassemble and transport it to a calibration laboratory or 

factory [1]. In other words, sensors are calibrated at their 

deployment location, ideally without physical intervention by 

leveraging their communication capabilities. As a result, the 

calibration of entire sensor networks is facilitated in cases 

where the calibration of individual sensors that are deeply 

integrated in a controlled environment is not feasible.  

 

In sensor networks, a co-calibration is a potential way to 

carry out an in situ calibration by using measurements from 

nearby sensors [2] along with appropriate interpolation and 

sensor fusion techniques. A common approach in this regard 

is the use of macro-calibration techniques, where the response 

of the entire network is optimized by estimating the relevant 

optimal parameters [3]. In the case of a blind calibration [4], 

i.e., in the absence of controlled reference values, a dense 

deployment of sensors is advantageous as nearby sensors 

measuring the same quantity can be assumed to have nearly 

identical responses. However, by exploiting the correlations 

between the sensors, a blind calibration can be achieved even 

in the absence of a dense deployment [5]. In-field calibration 

transfer [6] compares distributions of measured values over 

time instead of the measurements themselves, making it 

partially independent from their actual samples and 

timestamps. Furthermore, advanced machine learning 

approaches, such as nonlinear autoregressive exogenous 

model (NARX) and long short-term memory (LSTM) models 

were developed using data sets obtained from two reference 

stations in a city to calibrate low-cost air quality sensors [7]. 

To apply a machine learning approach to the data collected 

from sensor network nodes, the calibration operation is 

reformulated as a supervised learning problem, which allows 

to incorporate customised loss functions that particularly 

focus on a segment of the signal. As a result, the calibration 

approaches achieved generalization where the calibration 

models worked accurately in both separated testing sites.  

 

2.2 Calibration of hybrid models 

Hybrid model calibration is a method that harnesses the 

advantages of two different approaches. This might involve 

merging two distinct data-driven models or combining 

laboratory with field calibration methods.  A general hybrid 

calibration model for air quality using low-cost sensors was 

provided by [8]. The model was designed by combining the 

strengths of random forest regression, i.e., its ability to 

capture complicated nonlinear relationships between various 

inputs and the target output, with the ability of a simple linear 

model to extrapolate beyond the set of data on which the 

model is trained. The results showed that the calibration based 

on hybrid models tend to generalize best for NO, NO2, and 

O3 when applied to data collected at new sites. In addition, 

the Enhanced Ambient Sensing Environment (EASE) method 

was proposed as a hybrid method by combining the 

advantages of a laboratory calibration with the increased 

accuracy of a field calibration for calibrating low-cost gas 

sensors, such as NO2 and O3 [9]. A hybrid calibration model 

was also developed to calibrate low-cost air quality sensor 

networks in the presence of concept drift. This was achieved 

by combining batch machine learning algorithms and 

regularly updated online machine learning calibration 

function(s) for the whole network when a small number of 

reference instruments are present [10]. 

 

2.3 Aggregation of data in sensor networks  

A key aspect of modern industrial processes is the 

collection of large amounts of data from multiple sensors. 

There is usually a large amount of redundancy in the data, and 

to reduce the amount of data that has to be transmitted over 

the network, data aggregation techniques come into play.  

Data aggregation can be defined more precisely as a creative 

process that collects data from various sensors and IoT 

devices and then integrates them using an aggregation 

function to minimize the injected traffic into the system [19]. 

The main motivation for using data aggregation techniques is 

that, while it is cheap to measure quantities with low-cost 

sensors, the primary challenge in sensor networks execution 

lies in moving and storing the data from the source to the sink 

nodes. Hence, energy-efficient routing protocols have been 

developed to aggregate the data such as the Low Energy 

Adaptive Clustering Hierarchy (LEACH) [11], Power 

Efficient Gathering Sensor Information Systems (PEGASIS) 

[12], Cluster-Chain Mobile Agent Routing (CCMAR) [13], 

and Max-Sum algorithm [14]. Although these protocols are 

geared towards improving energy efficiency in wireless 

sensor networks, they differ mainly in their structural 

approach, role of nodes and computation algorithms. 

 

2.3.1 Uncertainty aware sensor fusion for drift 

detection 

In order to leverage aggregate information and obtain a 

more robust estimate of an observed quantity, sensor fusion 

operations are typically employed [15]. In other words, 

measurements from disparate sensors can be combined to 

generate a new value based on a particular mathematical 

model or algorithm to generate a new “fused” measurement. 

The resulting value typically cannot be directly measured by 

the constituent sensors. In the context of metrology, the key 

challenges here are to ensure compliance with quality 

requirements and to preserve the traceability of the fused 

value. Moreover, the sensor fusion needs to be implemented 

within suitable digital architectures for Industrial Internet of 

Things (IIoT) environments. In [16] a method for sensor 

aggregation and fusion that reduces the uncertainty of the 

derived value was proposed. The method can also be used to 

detect drifting sensors and is an extension of the classical 

method of using a chi-squared test for detecting outliers, first 

proposed in [17]. In [18] metrics for quantifying redundancy 
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were defined. A changing value of such a redundancy metric 

can indicate a drifting sensor. Some of these methods were 

implemented in the Met4FoF framework so that they can be 

used for automated uncertainty evaluation. In addition, failure 

and anomaly detection based on an adaptive Weibull 

distribution was developed to identify sensors that drift and 

generate anomalous data patterns in comparison to the 

measurements of reference instruments [19]. The method 

showed promising results after evaluating it on a dense air 

quality sensor network consisting of 126 low-cost sensors 

distributed in a city. Furthermore, a parallel calibration 

method based on white and black box Bayesian calibration 

models was developed for performing low-cost sensor 

calibration to cope with extreme events [20]. In the study, the 

uncertainty around Bayesian mean estimation also enables 

hidden sensor drifts to be detected. A method for uncertainty 

aware sensor aggregation and fusion was proposed in [16]. It 

was based on weighing the sensor data with their respective 

uncertainties. In addition, a linear transformation between 

measured sensor data and the measurand of interest was 

considered. Some of these methods were implemented in the 

agentMET4FOF framework1  so that they can be used for 

automated uncertainty evaluation. Furthermore, a modular 

approach towards homogeneous sensor-fusion using digital 

twins to represent the entities of two separate IIoT testbeds 

was presented in [21]. 

 

2.4  Machine learning 

The use of advanced machine learning (ML) methods is 

another key aspect of the Industrial Internet of Things, or 

IIoT, paradigm [22]. In contrast to classical ML algorithms 

like linear regression and support vector machines, deep 

learning methods are particularly well suited to exploit the 

large datasets generated by such systems [23] as well as their 

inherent nonlinearity [24]. For instance, a common 

application is the use of soft sensors based on machine 

learning to generate sophisticated measurements using data 

from a few sensors [25]. With sufficiently large datasets, deep 

learning based soft sensors can model nonlinear measurement 

models better than traditional methods [26]. Uncertainty 

propagation in this context refers to the determination of the 

output of the Machine Learning (ML) algorithm given the 

uncertainty of the inputs. For instance, the unscented 

transform is a means to efficiently propagate the probabilistic 

first and second moments of the input distributions through 

nonlinear models like neural networks [27], [28]. 

Furthermore, advanced machine learning approaches, such as 

nonlinear autoregressive exogenous model (NARX) and long 

short-term memory (LSTM) models were developed using 

data sets obtained from two reference stations in a city to 

calibrate low-cost air quality sensors [7]. The calibration 

approaches achieved generalization where the calibration 

models worked accurately in both separated testing sites. 

 

2.4.1 Online machine learning 

Online machine learning (also known as incremental 

or out-of-core learning) refers to a family of machine 

learning methods that use data as it becomes available in 

a sequential order as opposed to batch learning techniques 

which rely on learning on the entire training data set at 

once [29]. As large scale sensor networks will invariably 

 
1 https://github.com/Met4FoF/agentMET4FOF  

generate a large amount of data, centralized processing of 

this data can become computationally expensive. In the 

case of anomaly detection, a key advantage of online 

learning is that an ensemble of classifiers trained and 

executed “closer” to the sensor on a distributed embedded 

system can reduce energy consumption by limiting 

communication to a centralized server [30]. The 

development of online machine learning methods is 

especially relevant for networks that are transient in 

nature. 

 

2.4.2 Distributed networks and federated learning 

A distributed sensor network or DSN is defined as 

network consisting of a set of sensor nodes, a set of 

processing elements (PEs), and a communication network 

interconnecting the various PEs  [31]. Large-scale sensor 

networks deployed in most applications would correspond to 

this definition. Each PE is associated with one or more 

sensors and a given sensor can report to more than one PE. A 

PE and its associated sensors are referred to as a cluster and 

each cluster can function autonomously and can serve as a 

processing node for incoming sensor data. Pre-processing 

sensor data in this way can reduce bandwidth costs and 

potential computational overheads arising from the 

centralized processing of raw data.  

 

Federated learning (FL) refers to a machine learning 

paradigm in which  a shared global model is trained from a 

federation of participating devices acting as local learners 

under the coordination of a central server for model-

aggregation [32]. Federated learning was proposed [33] as a 

means to allow a model to be trained across multiple 

decentralized devices that hold local data samples without 

exchanging them - a feature that is particularly relevant in 

scenarios where data privacy, security, and access rights are 

a concern. For instance, a mobile device can download a 

given FL model from the cloud and improve it by learning 

from its own data. The resulting model is then sent back to 

the cloud to be averaged with updated models from other 

devices to improve the shared model. Thus, FL enables 

collective learning without sharing raw data by decentralizing 

the training of common predictive models. FL has been  

widely used for many use cases such as cross-institutional 

medical diagnosis [34], forecasting hospitalizations in the 

USA [35], [36],  fraud detection [37], energy-demand 

forecasting [38], and pharmaceuticals discovery [39]. Sensor 

networks are a key application area of FL. For example, [40] 

developed a dynamic average consensus-based FL in a 

decentralized sensor network to overcome the challenges of 

imbalanced communication congestions and a possible single 

point of failure caused by relying on a centralized topology. 

FL was used by [41] to build a malicious node detection 

model for the Internet of Sensor Things (IoST) while [42] 

used FL to propose an aerial sensing framework for fine-

grained 3-D ground air-quality monitoring and forecasting. 

Another example [43] used FL to solve the anomaly detection 

problem using sensor data in smart buildings with the aim of 

improving the prediction of energy usage in smart buildings. 

Recent efforts to quantify uncertainty quantification in FL 

have concentrated on methods to determine the model 

uncertainty [44], [45], [46]. However, approaches to 

https://github.com/Met4FoF/agentMET4FOF
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uncertainty propagation in FL are still lacking and require 

further research. 

 

2.5 Sensor networks and multi-agent systems 

Sensor networks collect data over long periods of time in 

challenging environments under limited computational 

capabilities [47]. Broadly speaking, the development of 

sensor networks benefits from both hardware and software 

advancements. From a hardware perspective, the electronics 

are advancing towards the use of long-lasting batteries, 

energy-efficient sensors, reliable sensors, and wireless 

communication networks. On the other hand, much research 

on the software development has been to deploy energy-

efficient algorithms and autonomous software agents [48], 

[49], [50]. Software agents are independent software 

processes imbued with autonomous duties (able to operate 

without human intervention) and common interfaces to 

communicate with other agents [48]. In computer science 

terms, an agent framework as a software package would 

provide abstract or base agent classes for developers to inherit 

from. Such software agents could be installed on edge 

computing devices and distributed servers, while enabling a 

seamless communication. Here, edge computing refers to a 

central concept of the IIoT, providing limited but capable 

computational power close to the actual sensors – aiming to 

enable energy efficient and decentral decision making, 

contributing to the systems sustainability. 

 

2.5.1 Agent Architectures 

Common agent classes designed for sensor networks 

include the Sensor Agent, Cluster Agent, Data Processing 

Agent, and Monitor Agent [48], [50], [51]. Their roles could 

be described as follows: the Sensor Agent represents the data 

stream of a sensor and has information and control over the 

sensor sampling rate; the Cluster Agent groups similar or 

related agents within its vicinity and aggregates sensors data; 

the Data Processing Agent performs mathematical operations 

on the sensor data to extract insights from the data. In more 

advanced applications, machine learning models could be 

used to detect anomalies and quantify uncertainties [52]; the 

Monitor Agent simply acts as a sink for the Data Processing 

Agent by gathering all the processed data and presenting them 

to the end-users. Another common role is the storage of 

historical data in a database.  

In addition to defining the roles of agents, designing the 

topology of an agent network is also vital. Common sensor 

network topologies are star, tree and mesh topologies [53], 

[54]. In a star topology, the Sensor Agents are connected to a 

centralized server which hosts the Data Processing Agent and 

the Monitor Agent. This setup is simple and intuitive to 

design; however, as a centralized setup, the network is prone 

to a single point of failure. 

The tree topology arranges the agents in a hierarchical 

fashion, and Cluster Agents are often used to orchestrate the 

Sensor Agents within their vicinity before sending the data to 

the Data Processing and Monitor Agents. The processing 

power of devices increases as we move higher in the tree 

hierarchy. This improves the self-healing capability and 

makes it straightforward to diagnose and rectify faults; 

however, it becomes increasingly complex to manage as the 

number of clusters and agents increases. 

Lastly, in a flat, non-hierarchical mesh topology, all 

agents are fully connected to other agents. In a fully 

decentralized fashion, agents must cooperate efficiently to 

route the data transmission and processing. The major 

advantage is that a single point of failure will not form a 

bottleneck in the overall network, while enabling the use of 

distributed message-passing algorithms to improve energy 

and communication efficiency. These, however, comes with 

the cost of greater complexity in managing and implementing 

compared to a conventional centralized approach. 

 

2.5.2 Real-world applications  

The use of MAS for sensor networks has been 

demonstrated for numerous real-world applications such as 

structural health monitoring of large aircraft structures [51], 

fire-fighting disaster intervention [47], intrusion detection in 

wireless networks [55],  crops and cattle monitoring [56],  

[59], energy efficient logistics [60], smart road systems [57], 

[58], [59], multi-video monitoring [60], autonomous 

underwater vehicles (AUVs) and unmanned aerial vehicles 

(UAVs) [61], [66], oil and gas refinery monitoring [62], and 

smart home monitoring [68], among others.  

3. REVIEW: TOOLS 

In this section we discuss some of the available tools that 

are relevant to automation in sensor networks. In particular, 

topics directly relevant to metrology such as the automated 

evaluation and propagation of measurement uncertainty, as 

well as more general topics such as the FIWARE framework 

and agentMET4FOF package will be discussed. 

 

3.1 Automated Uncertainty Evaluation 

Automated uncertainty evaluation (AUE) comprises 

algorithms that can process measurement data, identify 

sources of uncertainty (both systematic and random errors), 

and calculate the combined uncertainty as well as propagate 

known uncertainties to a derived quantity. Importantly, online 

capability and automation in such algorithms must be 

integrated directly into a measurement system – in the present 

case this refers to a given sensor network. An automated 

machine learning toolbox (AMLT), published by [63], allows 

for feature extraction from, and evaluation of cyclic sensor 

data. The aforementioned tool was extended in [64] to allow 

for uncertainty propagation according to the “Guide to the 

expression of Uncertainty in Measurement” (GUM, [65]). 

Several software packages for propagation of uncertainty 

based on the GUM are currently available. For example, the 

GUM Tree Calculator (GTC) is a data processing tool 

available as a python-based stand-alone Windows executable 

with full support for uncertainty calculations involving real 

and complex quantities [66]. The GUM Workbench supports 

the evaluation of measurements with multiple results and 

multiple budget tables as well as uncertainty propagation 

using Monte Carlo simulations [67]. The NIST Uncertainty 

machine [68] – a web-based uncertainty calculator, and the 

“metRology” package [69] support uncertainty evaluation 

and are based on the R programming language. 

Metas.UncLib [70] was created as part of the metrology 

software for the vector network analyser (VNA). As a 

Python-based general-purpose library for measurement 

uncertainty evaluation, it is capable of handling complex-

valued quantities that require a multivariate treatment for the 

calculation of the measurement uncertainty. PyDynamic [71] 

is another Python based library for users in metrology and 
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related areas who want to specifically deal with time-

dependent, i.e. dynamic, measurements. PyDynamic allows 

for an off-the-shelf application of NMI-level data analysis 

and measurement uncertainty evaluation methods. 

 

3.3 agentMET4FOF 

agentMET4FOF [50], [72] is a Python-based software 

framework to set up asynchronous agents with common 

features for distributed data streaming processes. It is an 

implementation of a multi-agent system for agent-based 

analysis and processing of both static data sets and data 

streams with IIoT applications in mind. Main applications 

have been demonstrated on sensor network for industrial use 

cases such as quality monitoring and equipment condition 

monitoring. Some key features of agentMET4FOF are as 

follows: 

• Modularity: Several preconfigured classes are provided 

for simulating or handling real distributed sensor 

networks. 

• Reconfigurability: The agent connections can be 

reconfigured on the fly. It can be used to model different 

sensor network topologies. When necessary, the 

properties or parameters of agents could also be 

modified. 

• Extensibility: custom classes can easily be integrated in 

the provided interface structure 

• Buffering: is a commonly required feature for 

processing online streaming data. For instance, online 

machine learning applications need to update the model 

with incoming data. The agent therefore needs to push 

and pop the data buffer with every new observation. The 

AgentBuffer class is provided as a common interface to 

check the buffer filled status and update it. Optionally, 

the buffer can be turned off for agents that do not need it.  

• Graphical user interface: agentMET4FOF is provided 

with an interactive web-based dashboard that offers real-

time visualization and configuration capabilities. This 

helps in quickly setting up demonstrations to 

stakeholders. 

• Different backends: The osbrain backend [73] is 

primarily used to deploy real distributed software 

processes; for instance, the deployment can take place on 

different edge devices like Raspberry Pi’s or other 

computers connected via a TCP network. For pure 

testing and simulation purposes, the backend can be 

swapped to the Mesa backend [74]. This could be to 

verify the agent network works as intended before actual 

deployment using the osbrain backend. 

• Metrological data classes: A key feature of 

agentMET4FOF is the provision of specific metrological 

data classes that incorporate measurement uncertainties. 

This includes the support of both data streams with 

uncertainty and metrological agents that process data 

with uncertainty. 

The agentMET4FOF software is accompanied by 

comprehensive documentation and tutorials [75]. 

 

3.4 FIWARE 

FIWARE offers an open-source framework that provides 

a standardized approach to managing context information in 

a way that is interoperable across various domains [76]. In 

order to ensure interoperability, a variety of protocols need to 

be implemented. Some typical examples of communication 

protocols are MQTT, CoAP, and AMQP, which are widely 

used within IoT ecosystems for their efficiency and low 

bandwidth requirements [77]. These protocols facilitate real-

time data communication, which is essential for online 

machine learning where immediate data processing is critical 

[78]. FIWARE’s role as a middleware can abstract the 

complexity of these protocols, providing a unified interface 

through its Orion Context Broker, which adheres to the Next 

Generation Service Interface (NGSI) standard [79]. This 

standardization is vital for ensuring that sensor networks are 

scalable and that machine learning algorithms can be 

distributed and federated across different systems [80]. 

Federated learning (see section 2.4.2) is especially relevant 

for sensor networks where privacy and bandwidth are 

concerns. FIWARE can support federated learning by 

enabling distributed devices to interact with a central context 

broker, managing the global model updates without exposing 

local data [81]. This is particularly important in scenarios like 

Smart Cities, where data from various sensors could be 

leveraged to improve urban services while maintaining data 

privacy. Generally, FIWARE presents a suite of components, 

with the Orion Context Broker [82] as a centrepiece, enabling 

the management and gathering of context information at a 

large scale. It offers a standardized Application Programming 

Interface (API) - e.g., NGSI - for context information 

management that facilitates the development and deployment 

of smart applications in a variety of relevant applications, 

such as environmental monitoring, across numerous use-

cases. A few key examples in this regard are a FIWARE 

based smart-city model demonstrating the advantage of the 

Orion Context Broker [83]; an architecture for wireless 

sensing and actuation in smart buildings, including real-time 

information exchange using a BIM (Building Information 

Model) [84]; the intelligent management of sports 

infrastructure [85]; an IoT-based acquisition of agricultural 

data [86]. There are also examples of FIWARE infrastructure 

used in manufacturing processes [87] and for increasing 

energy efficiency in buildings beyond the traditional energy-

saving measures [88]. 

4. CONCLUSIONS AND OUTLOOK 

In this review, a discussion of methods and tools relevant to 

the automated application of metrological methods to large 

scale sensor networks was presented. The first part of the 

review discussed methods relevant to applications using 

sensor networks such as in situ calibration and the calibration 

of hybrid models. The use of machine learning methods, 

particularly online machine learning and federated learning 

using distributed systems were subsequently covered. 

Thereafter, the discussion focussed on the use of agent-based 

systems in sensor networks. The discussion on methods was 

complemented by a review of specific software tools with 

potential applications to sensor network metrology. In 

particular, tools for automated uncertainty evaluation, the 

agentMET4FOF package for agent-based simulations and the 

FIWARE middleware framework were discussed. The aim of 

the review is to develop a set of requirements and scenarios 

that will be included in future software environments for the 
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automated application of metrological methods developed for 

sensor network metrology.  

In order to be applicable to large-scale transient networks, 

a software environment would need to fulfil certain 

requirements. An online-capable uncertainty propagation 

feature is necessary due to the transient nature of the networks 

used, particularly when mobile sensors are involved (e. g. in 

air-quality networks). Ideally, the methods would be 

implementable in both the time- and frequency/Laplace-

domains with the propagation of uncertainties for dynamic 

measurements integrated into the framework. 

Simultaneously, the capacity for the online implementation of 

drift detection methods is necessary. The ability to implement 

uncertainty-aware sensor fusion methods for both data-driven 

and physics-based models is also necessary. Data-

aggregation protocols will need to be appropriately adapted 

to use cases with both fixed and mobile sensors. Finally, 

methods, both semantic and numerical, to assess the 

correctness and trustworthiness of data will need to be 

integrated into the framework. Ideally, a testbed for models 

developed in this manner will be able to conduct simulations 

at both the software and middleware levels. 
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