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Abstract — Sensor networks are an integral component of
the ongoing automation of industrial processes in a diverse
range of sectors. As sensors and, by extension, sensor
networks provide information about physical quantities in the
form of measurements, the development and adaptation of
metrological practices that ensure the reliability, accuracy,
and traceability of the data thus generated is essential. A
complementary development of tools for the implementation
of metrological methods is necessary. In this contribution we
present a review of the tools and methods relevant to the
automated application of metrological practices to large-scale
transient sensor networks with an emphasis on uncertainty
aware soft- and middleware, data fusion and machine
learning. In this review, we will discuss the state-of-the-art
with respect to general metrological methods and specific
soft- and middleware tools and motivate future developments
in sensor network metrology.
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1. INTRODUCTION

The deployment of interconnected sensors in large
numbers as part of both homogeneous, i.e. measuring the
same physical quantity, as well as heterogenous networks is
a natural way to extend the utility of sensors and is of
increasing importance in several domains. As sensor
networks effectively function as distributed measurement
systems, the development of metrological practices tailored
to sensor networks is essential. Moreover, automation in both
the application of the developed methods as well as in the
analysis and processing of the typically large amount of data
generated is essential to the functioning of large-scale sensor
networks. In many real-world scenarios, transience, or
changes in the network properties with time adds an
additional layer of complexity. In this context, we aim to
review tools and methods relevant to the automated
application of metrological practices to large-scale transient
sensor networks (i.e., changes of topology, availability, or
placement of sensors in the network over time) with an
emphasis on metrological conformity and uncertainty
awareness in data evaluation, soft- and middleware, data
fusion and machine learning.

The review is divided into two sections. In the first, we
focus on general methods relevant to sensor networks. In

particular, we focus on the calibration using hybrid models as
well as in-situ and co-calibration, i.e. a calibration based on
measurement values of available sensors. Thereafter, we will
focus on data aggregation in sensor networks and uncertainty-
aware sensor fusion as a means to estimate physical quantities
that are not amenable to direct measurement. Subsequently,
we will provide a discussion of a key aspect of modern
industrial processes — the leveraging of redundant
information to obtain more accurate or robust estimates of
observed quantities using data aggregation and fusion. Both
model-based and deep learning methods will be covered
based on their suitability to exploit the large amount of data
generated by sensor networks in a metrologically consistent
manner. Specific methods relevant to large-scale transient
sensor networks such as online and federated learning as well
as using redundancy to reduce measurement uncertainty will
constitute this portion of the review. The section will be
concluded with a discussion of the use of multi-agent systems
in sensor networks — particularly their architecture and the
advantages they provide.

The second section will cover specific soft- and
middleware tools relevant to sensor network metrology.
Given the large number of commercial and open-source
software packages and toolboxes for uncertainty evaluation,
a thorough discussion on its automated implementation in
sensor networks will be provided. In particular, the evaluation
of dynamic measurement uncertainty and its real-time
implementation in sensor networks will be reviewed.
Subsequently, we will discuss the use of agentMET4FOF, a
Python-based software framework to set up asynchronous
agents with common features for distributed data streaming
processes. General aspects regarding agent-architectures and
the influence of network topology will inform the discussion.
A concurrent review of methods relevant to distributed sensor
networks will also be conducted. The middleware aspects of
sensor networks will be covered based on the example of
FIWARE - an open-source framework that provides a
standardized approach to managing context information in a
cross-domain and interoperable manner. The implementation
of relevant protocols in ensuring interoperability will be
covered simultaneously.

2. REVIEW: METHODS

In this section we cover recent developments in methods
relevant to sensor networks with the aim of characterizing the
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state-of-the-art and motivating future research in sensor
network metrology.

2.1 In-situ calibration and co-calibration

Massive sensor network deployments, though now within
economical and technical reach, present challenges with
regard to their maintenance and reliability. In particular,
reaching and then maintaining the targeted quality of
measurements throughout the deployment duration is an
important issue. Although it would be highly relevant given
their tendency to drift due to premature aging, factory
calibration is often prohibitively expensive for systematic
application to low-cost sensors. Furthermore, there are
concerns about the applicability of factory calibration to field
conditions. These challenges have in turn fostered a
considerable amount of research on in-situ calibration. In-situ
calibration refers to the characterization of the measurement
model of a deployed sensor and its uncertainty, i.e., its
calibration at the location of its deployment without having to
disassemble and transport it to a calibration laboratory or
factory [1]. In other words, sensors are calibrated at their
deployment location, ideally without physical intervention by
leveraging their communication capabilities. As a result, the
calibration of entire sensor networks is facilitated in cases
where the calibration of individual sensors that are deeply
integrated in a controlled environment is not feasible.

In sensor networks, a co-calibration is a potential way to
carry out an in situ calibration by using measurements from
nearby sensors [2] along with appropriate interpolation and
sensor fusion techniques. A common approach in this regard
is the use of macro-calibration techniques, where the response
of the entire network is optimized by estimating the relevant
optimal parameters [3]. In the case of a blind calibration [4],
i.e., in the absence of controlled reference values, a dense
deployment of sensors is advantageous as nearby sensors
measuring the same quantity can be assumed to have nearly
identical responses. However, by exploiting the correlations
between the sensors, a blind calibration can be achieved even
in the absence of a dense deployment [5]. In-field calibration
transfer [6] compares distributions of measured values over
time instead of the measurements themselves, making it
partially independent from their actual samples and
timestamps. Furthermore, advanced machine learning
approaches, such as nonlinear autoregressive exogenous
model (NARX) and long short-term memory (LSTM) models
were developed using data sets obtained from two reference
stations in a city to calibrate low-cost air quality sensors [7].
To apply a machine learning approach to the data collected
from sensor network nodes, the calibration operation is
reformulated as a supervised learning problem, which allows
to incorporate customised loss functions that particularly
focus on a segment of the signal. As a result, the calibration
approaches achieved generalization where the calibration
models worked accurately in both separated testing sites.

2.2 Calibration of hybrid models

Hybrid model calibration is a method that harnesses the
advantages of two different approaches. This might involve
merging two distinct data-driven models or combining
laboratory with field calibration methods. A general hybrid
calibration model for air quality using low-cost sensors was
provided by [8]. The model was designed by combining the

strengths of random forest regression, i.e., its ability to
capture complicated nonlinear relationships between various
inputs and the target output, with the ability of a simple linear
model to extrapolate beyond the set of data on which the
model is trained. The results showed that the calibration based
on hybrid models tend to generalize best for NO, NO2, and
03 when applied to data collected at new sites. In addition,
the Enhanced Ambient Sensing Environment (EASE) method
was proposed as a hybrid method by combining the
advantages of a laboratory calibration with the increased
accuracy of a field calibration for calibrating low-cost gas
sensors, such as NO2 and O3 [9]. A hybrid calibration model
was also developed to calibrate low-cost air quality sensor
networks in the presence of concept drift. This was achieved
by combining batch machine learning algorithms and
regularly updated online machine learning calibration
function(s) for the whole network when a small number of
reference instruments are present [10].

2.3 Aggregation of data in sensor networks

A key aspect of modern industrial processes is the
collection of large amounts of data from multiple sensors.
There is usually a large amount of redundancy in the data, and
to reduce the amount of data that has to be transmitted over
the network, data aggregation techniques come into play.
Data aggregation can be defined more precisely as a creative
process that collects data from various sensors and loT
devices and then integrates them using an aggregation
function to minimize the injected traffic into the system [19].
The main motivation for using data aggregation techniques is
that, while it is cheap to measure quantities with low-cost
sensors, the primary challenge in sensor networks execution
lies in moving and storing the data from the source to the sink
nodes. Hence, energy-efficient routing protocols have been
developed to aggregate the data such as the Low Energy
Adaptive Clustering Hierarchy (LEACH) [11], Power
Efficient Gathering Sensor Information Systems (PEGASIS)
[12], Cluster-Chain Mobile Agent Routing (CCMAR) [13],
and Max-Sum algorithm [14]. Although these protocols are
geared towards improving energy efficiency in wireless
sensor networks, they differ mainly in their structural
approach, role of nodes and computation algorithms.

2.3.1 Uncertainty aware sensor fusion for drift
detection

In order to leverage aggregate information and obtain a
more robust estimate of an observed quantity, sensor fusion
operations are typically employed [15]. In other words,
measurements from disparate sensors can be combined to
generate a new value based on a particular mathematical
model or algorithm to generate a new “fused” measurement.
The resulting value typically cannot be directly measured by
the constituent sensors. In the context of metrology, the key
challenges here are to ensure compliance with quality
requirements and to preserve the traceability of the fused
value. Moreover, the sensor fusion needs to be implemented
within suitable digital architectures for Industrial Internet of
Things (1loT) environments. In [16] a method for sensor
aggregation and fusion that reduces the uncertainty of the
derived value was proposed. The method can also be used to
detect drifting sensors and is an extension of the classical
method of using a chi-squared test for detecting outliers, first
proposed in [17]. In [18] metrics for quantifying redundancy

20f8



were defined. A changing value of such a redundancy metric
can indicate a drifting sensor. Some of these methods were
implemented in the Met4FoF framework so that they can be
used for automated uncertainty evaluation. In addition, failure
and anomaly detection based on an adaptive Weibull
distribution was developed to identify sensors that drift and
generate anomalous data patterns in comparison to the
measurements of reference instruments [19]. The method
showed promising results after evaluating it on a dense air
quality sensor network consisting of 126 low-cost sensors
distributed in a city. Furthermore, a parallel calibration
method based on white and black box Bayesian calibration
models was developed for performing low-cost sensor
calibration to cope with extreme events [20]. In the study, the
uncertainty around Bayesian mean estimation also enables
hidden sensor drifts to be detected. A method for uncertainty
aware sensor aggregation and fusion was proposed in [16]. It
was based on weighing the sensor data with their respective
uncertainties. In addition, a linear transformation between
measured sensor data and the measurand of interest was
considered. Some of these methods were implemented in the
agentMET4FOF framework® so that they can be used for
automated uncertainty evaluation. Furthermore, a modular
approach towards homogeneous sensor-fusion using digital
twins to represent the entities of two separate 10T testbeds
was presented in [21].

2.4 Machine learning

The use of advanced machine learning (ML) methods is
another key aspect of the Industrial Internet of Things, or
I1oT, paradigm [22]. In contrast to classical ML algorithms
like linear regression and support vector machines, deep
learning methods are particularly well suited to exploit the
large datasets generated by such systems [23] as well as their
inherent nonlinearity [24]. For instance, a common
application is the use of soft sensors based on machine
learning to generate sophisticated measurements using data
from a few sensors [25]. With sufficiently large datasets, deep
learning based soft sensors can model nonlinear measurement
models better than traditional methods [26]. Uncertainty
propagation in this context refers to the determination of the
output of the Machine Learning (ML) algorithm given the
uncertainty of the inputs. For instance, the unscented
transform is a means to efficiently propagate the probabilistic
first and second moments of the input distributions through
nonlinear models like neural networks [27], [28].
Furthermore, advanced machine learning approaches, such as
nonlinear autoregressive exogenous model (NARX) and long
short-term memory (LSTM) models were developed using
data sets obtained from two reference stations in a city to
calibrate low-cost air quality sensors [7]. The calibration
approaches achieved generalization where the calibration
models worked accurately in both separated testing sites.

2.4.1  Online machine learning

Online machine learning (also known as incremental
or out-of-core learning) refers to a family of machine
learning methods that use data as it becomes available in
a sequential order as opposed to batch learning techniques
which rely on learning on the entire training data set at
once [29]. As large scale sensor networks will invariably

1 https://github.com/Met4FoF/agentMET4FOF

generate a large amount of data, centralized processing of
this data can become computationally expensive. In the
case of anomaly detection, a key advantage of online
learning is that an ensemble of classifiers trained and
executed “closer” to the sensor on a distributed embedded
system can reduce energy consumption by limiting
communication to a centralized server [30]. The
development of online machine learning methods is
especially relevant for networks that are transient in
nature.

2.4.2 Distributed networks and federated learning

A distributed sensor network or DSN is defined as
network consisting of a set of sensor nodes, a set of
processing elements (PEs), and a communication network
interconnecting the various PEs [31]. Large-scale sensor
networks deployed in most applications would correspond to
this definition. Each PE is associated with one or more
sensors and a given sensor can report to more than one PE. A
PE and its associated sensors are referred to as a cluster and
each cluster can function autonomously and can serve as a
processing node for incoming sensor data. Pre-processing
sensor data in this way can reduce bandwidth costs and
potential computational overheads arising from the
centralized processing of raw data.

Federated learning (FL) refers to a machine learning
paradigm in which a shared global model is trained from a
federation of participating devices acting as local learners
under the coordination of a central server for model-
aggregation [32]. Federated learning was proposed [33] as a
means to allow a model to be trained across multiple
decentralized devices that hold local data samples without
exchanging them - a feature that is particularly relevant in
scenarios where data privacy, security, and access rights are
a concern. For instance, a mobile device can download a
given FL model from the cloud and improve it by learning
from its own data. The resulting model is then sent back to
the cloud to be averaged with updated models from other
devices to improve the shared model. Thus, FL enables
collective learning without sharing raw data by decentralizing
the training of common predictive models. FL has been
widely used for many use cases such as cross-institutional
medical diagnosis [34], forecasting hospitalizations in the
USA [35], [36], fraud detection [37], energy-demand
forecasting [38], and pharmaceuticals discovery [39]. Sensor
networks are a key application area of FL. For example, [40]
developed a dynamic average consensus-based FL in a
decentralized sensor network to overcome the challenges of
imbalanced communication congestions and a possible single
point of failure caused by relying on a centralized topology.
FL was used by [41] to build a malicious node detection
model for the Internet of Sensor Things (10ST) while [42]
used FL to propose an aerial sensing framework for fine-
grained 3-D ground air-quality monitoring and forecasting.
Another example [43] used FL to solve the anomaly detection
problem using sensor data in smart buildings with the aim of
improving the prediction of energy usage in smart buildings.
Recent efforts to quantify uncertainty quantification in FL
have concentrated on methods to determine the model
uncertainty [44], [45], [46]. However, approaches to
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uncertainty propagation in FL are still lacking and require
further research.

25 Sensor networks and multi-agent systems

Sensor networks collect data over long periods of time in
challenging environments under limited computational
capabilities [47]. Broadly speaking, the development of
sensor networks benefits from both hardware and software
advancements. From a hardware perspective, the electronics
are advancing towards the use of long-lasting batteries,
energy-efficient sensors, reliable sensors, and wireless
communication networks. On the other hand, much research
on the software development has been to deploy energy-
efficient algorithms and autonomous software agents [48],
[49], [50]. Software agents are independent software
processes imbued with autonomous duties (able to operate
without human intervention) and common interfaces to
communicate with other agents [48]. In computer science
terms, an agent framework as a software package would
provide abstract or base agent classes for developers to inherit
from. Such software agents could be installed on edge
computing devices and distributed servers, while enabling a
seamless communication. Here, edge computing refers to a
central concept of the IloT, providing limited but capable
computational power close to the actual sensors — aiming to
enable energy efficient and decentral decision making,
contributing to the systems sustainability.

2.5.1 Agent Architectures

Common agent classes designed for sensor networks
include the Sensor Agent, Cluster Agent, Data Processing
Agent, and Monitor Agent [48], [50], [51]. Their roles could
be described as follows: the Sensor Agent represents the data
stream of a sensor and has information and control over the
sensor sampling rate; the Cluster Agent groups similar or
related agents within its vicinity and aggregates sensors data;
the Data Processing Agent performs mathematical operations
on the sensor data to extract insights from the data. In more
advanced applications, machine learning models could be
used to detect anomalies and quantify uncertainties [52]; the
Monitor Agent simply acts as a sink for the Data Processing
Agent by gathering all the processed data and presenting them
to the end-users. Another common role is the storage of
historical data in a database.

In addition to defining the roles of agents, designing the
topology of an agent network is also vital. Common sensor
network topologies are star, tree and mesh topologies [53],
[54]. In a star topology, the Sensor Agents are connected to a
centralized server which hosts the Data Processing Agent and
the Monitor Agent. This setup is simple and intuitive to
design; however, as a centralized setup, the network is prone
to a single point of failure.

The tree topology arranges the agents in a hierarchical
fashion, and Cluster Agents are often used to orchestrate the
Sensor Agents within their vicinity before sending the data to
the Data Processing and Monitor Agents. The processing
power of devices increases as we move higher in the tree
hierarchy. This improves the self-healing capability and
makes it straightforward to diagnose and rectify faults;
however, it becomes increasingly complex to manage as the
number of clusters and agents increases.

Lastly, in a flat, non-hierarchical mesh topology, all
agents are fully connected to other agents. In a fully

decentralized fashion, agents must cooperate efficiently to
route the data transmission and processing. The major
advantage is that a single point of failure will not form a
bottleneck in the overall network, while enabling the use of
distributed message-passing algorithms to improve energy
and communication efficiency. These, however, comes with
the cost of greater complexity in managing and implementing
compared to a conventional centralized approach.

2.5.2 Real-world applications

The use of MAS for sensor networks has been
demonstrated for numerous real-world applications such as
structural health monitoring of large aircraft structures [51],
fire-fighting disaster intervention [47], intrusion detection in
wireless networks [55], crops and cattle monitoring [56],
[59], energy efficient logistics [60], smart road systems [57],
[58], [59], multi-video monitoring [60], autonomous
underwater vehicles (AUVs) and unmanned aerial vehicles
(UAVs) [61], [66], oil and gas refinery monitoring [62], and
smart home monitoring [68], among others.

3. REVIEW: TOOLS

In this section we discuss some of the available tools that
are relevant to automation in sensor networks. In particular,
topics directly relevant to metrology such as the automated
evaluation and propagation of measurement uncertainty, as
well as more general topics such as the FIWARE framework
and agentMET4FOF package will be discussed.

3.1 Automated Uncertainty Evaluation

Automated uncertainty evaluation (AUE) comprises
algorithms that can process measurement data, identify
sources of uncertainty (both systematic and random errors),
and calculate the combined uncertainty as well as propagate
known uncertainties to a derived quantity. Importantly, online
capability and automation in such algorithms must be
integrated directly into a measurement system — in the present
case this refers to a given sensor network. An automated
machine learning toolbox (AMLT), published by [63], allows
for feature extraction from, and evaluation of cyclic sensor
data. The aforementioned tool was extended in [64] to allow
for uncertainty propagation according to the “Guide to the
expression of Uncertainty in Measurement” (GUM, [65]).
Several software packages for propagation of uncertainty
based on the GUM are currently available. For example, the
GUM Tree Calculator (GTC) is a data processing tool
available as a python-based stand-alone Windows executable
with full support for uncertainty calculations involving real
and complex quantities [66]. The GUM Workbench supports
the evaluation of measurements with multiple results and
multiple budget tables as well as uncertainty propagation
using Monte Carlo simulations [67]. The NIST Uncertainty
machine [68] — a web-based uncertainty calculator, and the
“metRology” package [69] support uncertainty evaluation
and are based on the R programming language.
Metas.UncLib [70] was created as part of the metrology
software for the vector network analyser (VNA). As a
Python-based general-purpose library for measurement
uncertainty evaluation, it is capable of handling complex-
valued quantities that require a multivariate treatment for the
calculation of the measurement uncertainty. PyDynamic [71]
is another Python based library for users in metrology and
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related areas who want to specifically deal with time-
dependent, i.e. dynamic, measurements. PyDynamic allows
for an off-the-shelf application of NMI-level data analysis
and measurement uncertainty evaluation methods.

3.3 agentMET4FOF

agentMET4FOF [50], [72] is a Python-based software
framework to set up asynchronous agents with common
features for distributed data streaming processes. It is an
implementation of a multi-agent system for agent-based
analysis and processing of both static data sets and data
streams with 10T applications in mind. Main applications
have been demonstrated on sensor network for industrial use
cases such as quality monitoring and equipment condition
monitoring. Some key features of agentMET4FOF are as
follows:

e Modularity: Several preconfigured classes are provided
for simulating or handling real distributed sensor
networks.

¢ Reconfigurability: The agent connections can be
reconfigured on the fly. It can be used to model different
sensor network topologies. When necessary, the
properties or parameters of agents could also be
modified.

o Extensibility: custom classes can easily be integrated in
the provided interface structure

e Buffering: is a commonly required feature for
processing online streaming data. For instance, online
machine learning applications need to update the model
with incoming data. The agent therefore needs to push
and pop the data buffer with every new observation. The
AgentBuffer class is provided as a common interface to
check the buffer filled status and update it. Optionally,
the buffer can be turned off for agents that do not need it.

e Graphical user interface: agentMET4FOF is provided
with an interactive web-based dashboard that offers real-
time visualization and configuration capabilities. This
helps in quickly setting up demonstrations to
stakeholders.

o Different backends: The osbrain backend [73] is
primarily used to deploy real distributed software
processes; for instance, the deployment can take place on
different edge devices like Raspberry Pi’s or other
computers connected via a TCP network. For pure
testing and simulation purposes, the backend can be
swapped to the Mesa backend [74]. This could be to
verify the agent network works as intended before actual
deployment using the osbrain backend.

e Metrological data classes: A key feature of
agentMETA4FOF is the provision of specific metrological
data classes that incorporate measurement uncertainties.
This includes the support of both data streams with
uncertainty and metrological agents that process data
with uncertainty.

The agentMET4FOF software is accompanied by
comprehensive documentation and tutorials [75].

3.4 FIWARE
FIWARE offers an open-source framework that provides

a standardized approach to managing context information in
a way that is interoperable across various domains [76]. In
order to ensure interoperability, a variety of protocols need to
be implemented. Some typical examples of communication
protocols are MQTT, CoAP, and AMQP, which are widely
used within 10T ecosystems for their efficiency and low
bandwidth requirements [77]. These protocols facilitate real-
time data communication, which is essential for online
machine learning where immediate data processing is critical
[78]. FIWARE’s role as a middleware can abstract the
complexity of these protocols, providing a unified interface
through its Orion Context Broker, which adheres to the Next
Generation Service Interface (NGSI) standard [79]. This
standardization is vital for ensuring that sensor networks are
scalable and that machine learning algorithms can be
distributed and federated across different systems [80].
Federated learning (see section 2.4.2) is especially relevant
for sensor networks where privacy and bandwidth are
concerns. FIWARE can support federated learning by
enabling distributed devices to interact with a central context
broker, managing the global model updates without exposing
local data [81]. This is particularly important in scenarios like
Smart Cities, where data from various sensors could be
leveraged to improve urban services while maintaining data
privacy. Generally, FIWARE presents a suite of components,
with the Orion Context Broker [82] as a centrepiece, enabling
the management and gathering of context information at a
large scale. It offers a standardized Application Programming
Interface (API) - e.g., NGSI - for context information
management that facilitates the development and deployment
of smart applications in a variety of relevant applications,
such as environmental monitoring, across numerous use-
cases. A few key examples in this regard are a FIWARE
based smart-city model demonstrating the advantage of the
Orion Context Broker [83]; an architecture for wireless
sensing and actuation in smart buildings, including real-time
information exchange using a BIM (Building Information
Model) [84]; the intelligent management of sports
infrastructure [85]; an loT-based acquisition of agricultural
data [86]. There are also examples of FIWARE infrastructure
used in manufacturing processes [87] and for increasing
energy efficiency in buildings beyond the traditional energy-
saving measures [88].

4. CONCLUSIONS AND OUTLOOK

In this review, a discussion of methods and tools relevant to
the automated application of metrological methods to large
scale sensor networks was presented. The first part of the
review discussed methods relevant to applications using
sensor networks such as in situ calibration and the calibration
of hybrid models. The use of machine learning methods,
particularly online machine learning and federated learning
using distributed systems were subsequently covered.
Thereafter, the discussion focussed on the use of agent-based
systems in sensor networks. The discussion on methods was
complemented by a review of specific software tools with
potential applications to sensor network metrology. In
particular, tools for automated uncertainty evaluation, the
agentMET4FOF package for agent-based simulations and the
FIWARE middleware framework were discussed. The aim of
the review is to develop a set of requirements and scenarios
that will be included in future software environments for the
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automated application of metrological methods developed for
sensor network metrology.

In order to be applicable to large-scale transient networks,
a software environment would need to fulfil certain
requirements. An online-capable uncertainty propagation
feature is necessary due to the transient nature of the networks
used, particularly when mobile sensors are involved (e. g. in
air-quality networks). Ideally, the methods would be
implementable in both the time- and frequency/Laplace-
domains with the propagation of uncertainties for dynamic
measurements integrated into the  framework.
Simultaneously, the capacity for the online implementation of
drift detection methods is necessary. The ability to implement
uncertainty-aware sensor fusion methods for both data-driven
and physics-based models is also necessary. Data-
aggregation protocols will need to be appropriately adapted
to use cases with both fixed and mobile sensors. Finally,
methods, both semantic and numerical, to assess the
correctness and trustworthiness of data will need to be
integrated into the framework. Ideally, a testbed for models
developed in this manner will be able to conduct simulations
at both the software and middleware levels.
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