INFORMAZIONI DI SERVIZIO

PER GLI «ESTERNI» NON UNITO

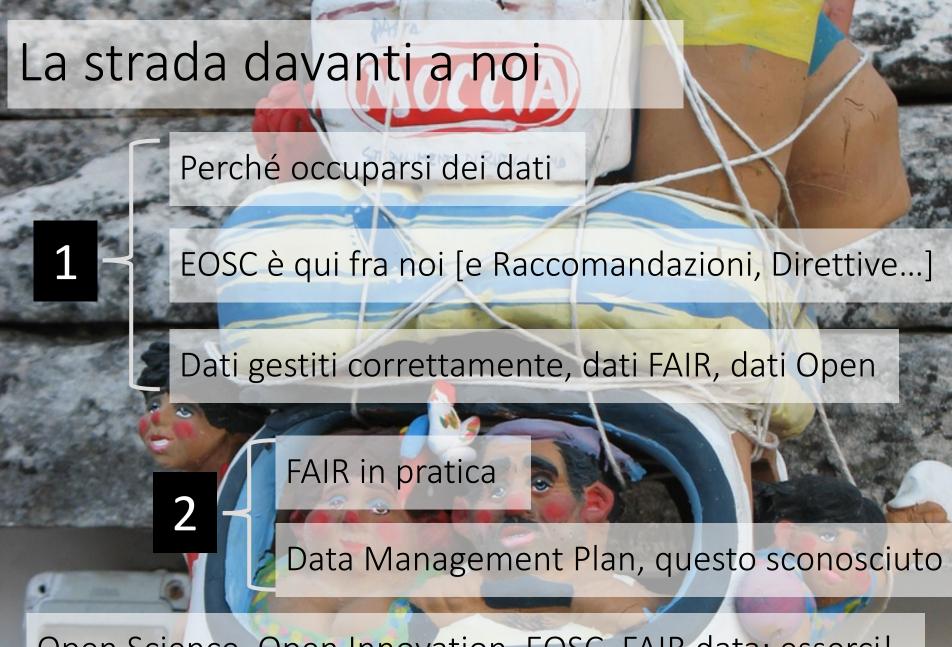
CHI AVESSE BISOGNO DEL CERTIFICATO DI PARTECIPAZIONE DEVE ISCRIVERSI UTILIZZANDO IL MODULO CHE TROVATE ALLA PAGINA SU OA.UNITO/CORSI

PER FAVORE
SPEGNETE
MICROFONI E
WEBCAM!

ISCRIVETEVI ALLA FINE DEL CORSO...

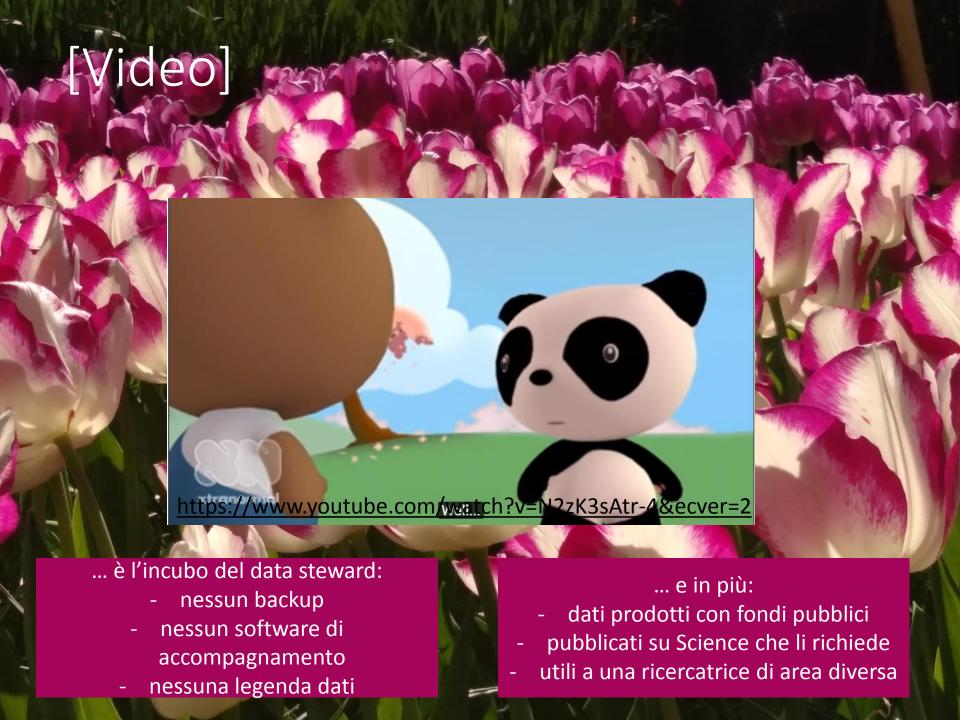
DOVRETE DICHIARARE DI AVERLO SEGUITO!

LE SLIDES SONO DISPONIBILI SU ZENODO https://doi.org/10.5281/zenodo.3900981


POI SARANNO SULLA PAGINA

https://www.oa.unito.it/new/open-science-open-access-fair-data-eosc-webinar-in-collaborazione-con-openaire/
INSIEME ALLA REGISTRAZIONE

REGISTRAZIONE
INUTILIZZABILE
SE TENETE
MICROFONI
APERTI


OPEN SCIENCE DALLA A ALLA Z 5 - GESTIONE DEI DATI, FAIR, OPEN

Open Science, Open Innovation, EOSC, FAIR data: esserci!

[THE EOSC!]

The Vienna

Vienna, 23 Novemb

We, Ministers, **European Ope**

- 1. Recall the challer Brussels on 10 July
- 2. Reaffirm the pote the vision of the Eur States, sustainable
- 3. Recognise that the iterative and based consensus among s
- 4. Highlight that Eu services for Science. Rea reaching out over time to
- 5. Recall that the Council

BRINGING TOGETHER CURRENT AND FUTURE DATA INFRASTRUCTURES

€2 BN IN OVERALL HORIZON 2020 FUNDING TO THE EUROPEAN A trusted, c CLOUD INITIATIVE, WITH ESTIMATED ADDITIONAL PUBLIC AND for sharin PRIVATE INVESTMENT OF €4.7 BN REQUIRED TO FURTHER DEVELOP THE EUROPEAN DATA INFRASTRUCTURE.

Link

Connecting scientists

globally

and private sectors

1bn EU-wide Quantum

Long term

and sustainable

d seamless analyse and search data

cross borders ic disciplines

Improving science

EOSC

na, Nov.23, 2018

of the

eclaration" signed in

urope. Confirm that plines and Member

by its nature ue to build trust and

cation of cloud

and open to the world,

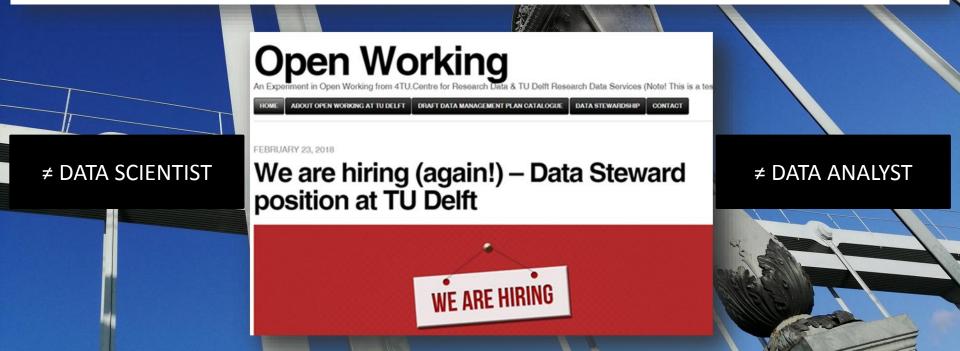
roadmap and the federated

SEAMLESS ACCESS TO OPEN BY DEFAULT **FAIR DATA**

9. Call for the European Open Science Cloud to provide all researchers in Europe with seamless access to an open-by-default, efficient and cross-disciplinary environment for storing, accessing, reusing and processing research data supported by FAIR data principles

aunch of the p

Science Cloud a reality, hinting at the need to further strengthen the ongoing dialogue across institutions and with stakeholders, for a new governance framework to be launched in Vienna, on 23 November 2018.


Note that the 2010 E000 outfilling their off 11 outle 2010/ called for acceleration towards making the European Open

[EOSC e I data stewards

the European
Open Science Cloud
Report, 2016

The number of people with these skills needed to effectively operate the EOSC is, we estimate, likely exceeding half a million within a decade. As we further argue below, we believe that the implementation of the EOSC needs to include instruments to help train, retain and recognise this expertise, in order to support the 1.7 million scientists and over 70 million people working in innovation⁹. The success of the EOSC depends upon it.

[competenze]

Competence Profile

A data steward is a data specialist with strong domain-specific knowledge who understands and appreciates the relevance of data, data sources, data infrastructure and constraints within a scientific or other application domain.

The future Data Steward must assume ownership and responsibility for data, data quality, and the data life-cycle as their primary function. They should ensure collaboration and coherence between IT competences, quality assurance, security, rules & regulations, and facilitate the application and use of data internally and externally in the organisation.

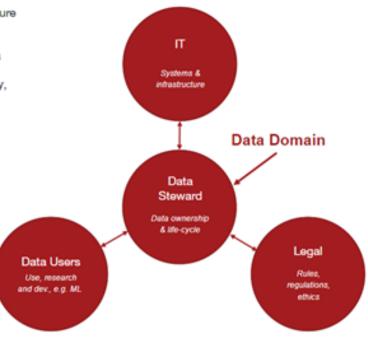
Competence profile examples

- Domain-specific data understanding
- Ability to ensure that structured and unstructured data and meta data is modelled, harvested, stored, and maintained in a documented, and regulated fashion with focus and findability, accessibility, interoperability, and reusability.
- Competences to facilitate HPC (High Performance Computing) during development and research through handling of largescale data in public and private enterprises.
- Understanding of and competences within legal, ethical and security aspects of data handling, data sharing, e.g., integrity and GDPR.

06/0.

Education core content

This 1-year degree should build upon students' educational/job background through domain specific data knowledge and leverage with theoretical and practical competences.


The education can be viewed as a Data Steward specialisation within the domain of their previous degree/jobs. The education contains **60 ECTS** and is expected to finish with a 15 ECTS project.

Preliminary Content

The 60 ECTS should be distributed among the following main areas:

- 22,5-30 ECTS: IT competences including computational thinking, data modelling, data management, data harvesting, cleaning, and storing, infra-structure (storage & compute). An introduction to data science, machine learning, and their derived data needs.
- 7,5-15 ECTS: Legal and ethical competences including GDPR, FAIR, data security, and data & AI ethics.
- 7,5-15 ECTS: Domain specific data competences including knowledge about data, infrastructure, and practice
 within the students primary domain, e.g., health, life-science, finance/fintech, or the public sector.
- · 15 ECTS: Graduate project (possibly in collaboration with academia, industry, or the public sector)

Competences such as project management, communication skills, and change management should be incorporated as well

Copenhagen Univ. June 17 2020

...e non dimentichiamo H2020

DMP VA FATTO SEMPRE, NON SOLO SE CI SONO DATI OPEN.
OGNI PROGETTO GESTISCE DATI (E DEVE FARLO CORRETTAMENTE).
CHE POI LI APRA O NO SI VEDE APPUNTO NEL DMP...

H2020 Programme

AGA – Annotated Model Grant Agreement

https://goo.gl/sryNTg

3. Open access to research data (Extended Open Research Data Pilot)

What?

Beneficiaries of actions that participate in the Open Research Data Pilot must give **open**, **free-of-charge access** to the end-user to **digital research data** generated during the action (new in Horizon 2020).

As of the Work Programme 2017, the Open Research Data pilot has been extended to all thematic areas of Horizon 2020 (except ERC PoC actions, SME instrument Ph1 actions, ERA-NET Cofund actions that do not produce data, EJP Cofund actions, and prizes).

Participation is therefore now in principle the default. However, actions may opt out at any stage — both before signing the GA and afterwards (through an amendment; see Article 55) —, if:

participation is incompatible with the obligation to protect results (see Article 27)

GRANT AGREEMENT ART, 29.3

- participation is incompatible with the security obligations (see Article 37)
- participation is incompatible with rules on protection of personal data
- participation would mean that the project's main aim might not be achieved
- the project will not generate/collect any research data or
- there are other legitimate reasons not to take part.

- PILOT PROJECT EXTENDED TO ALL DISCIPLINES
- OPT OUT CLAUSES
PRINCIPLE: **«AS OPEN AS POSSIBLE, AS CLOSED AS NECESSARY»**

...e non dimentichiamo H2020

Actions participating in the pilot must draw up a **data management plan (DMP)** within the first Actions 6 months of the project implementation.

https://goo.gl/sr

The data management plan must support the management life-cycle for all data that will be collected, processed or generated by the action. It must cover how to make data findable, accessible, interoperable and re-usable (FAIR), including:

- the handling of data during and after the project
- what data will be collected, processed or generated
- what methodology and standards will be applied
- whether data will be shared / made open access (and how) and, if any, what data will not be shared / made open access (and why)
- how data will be curated and preserved.

The data management plan should be updated (and become more precise) as the project evolves. New versions should be created whenever important changes to the project occur (e.g. new data sets, changes in consortium policies, etc.), at least as part of the mid-term review (if any) and at the end of the project.

DATA MANAGEMENT PLAN (DMP)

- DELIVERABLE
- WITHIN M6
- TO BE UPDATED

In questo modulo impareremo:

1. come gestire i propri dati correttamente e rendere la ricerca più efficace

2. la differenza fra dati FAIR e Open MESSAGGI CHIAVE

- gestíre bene í datí è nell'interesse dí chí fa rícerca
- solo datí gestítí bene possono essere resí FAIR e se possíbíle apertí
- NON cí sarà una ricetta per DMP, ma strumenti utili (da imparare) [DMP]

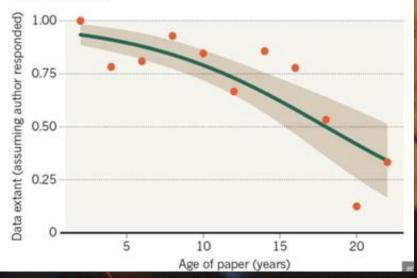
S.Aliprandi, Sicurezza dati e privacy (le norme) 2017

... i dati sono fragili

Scientists losing data at a rapid rate

Decline can mean 80% of data are unavailable after 20 years.

Elizabeth Gibney & Richard Van Noorden


19 December 2013

Rights & Permissions

80% saranno persi in 20 anni

MISSING DATA

As research articles age, the odds of their raw data being extant drop dramatically.

http://www.nature.com/news/scientists-losing-data-at-a-rapid-rate-1.1441b

...ECCO A COSA SERVE IL

DATA MANAGEMENT PLAN.

NON È SOLO L'ENNESIMA NOIA

BUROCRATICA

DOVE LI CONSERVO MENTRE CI LAVORO? CHI HA ACCESSO? CHE SISTEMA DI SICUREZZA È PREVISTO?

Public information.

- Research data that has been de-identified in accordance with applicable rules
- Published research
- Published information about the University
- Course catalogs
- Directory information about students who have not requested a FERPA block
- Faculty and staff directory information

Harvard security

Main Points Data Management Concept Note

Data acquisition

- · Check the type, source of the data and how to gather/collect it
 - Data types (to help define sensitivity of collected and processed data)
 - Data format (to help define the tools and infrastructure needed)
 - Data size (to help define storage and infrastructure needs)
- · Check the ownership of the collected and processed data
 - o Check with the data source about the ownership, attribution and use conditions (e.g. licence)
 - Check the need to make a data processing agreement with the data source on the ownership / access control
 - Are there (own) institutional policies that apply to the data?
 - Can the data be shared with other parties (if so, under which circumstances?)
- Confidentiality of the data (if applicable):
 - Register crucial information regarding data access / sharing
 - Ensure security of confidential data (personal data, commercially sensitive data, or data that would harm society when publicly disclosed)
 - Ensure compliance with General Data Protection Regulation / Algemene verordening gegevensbescherming when processing personal data
 - Ensure there are procedures in place to avoid data breaches, with the support of a privacy advisor/data protection officer

Data collection

- Establish a workflow for data collection
 - o How will the data be collected?
 - Who has access to which data in short / long term?
 - What resources are needed for data analysis?
 - o How will the data be exchanged / transferred among relevant stakeholders?
- Storage arrangement
 - Check available storage capacity and backup strategy

Data storing / backup

- · Create a clear folder structure and consistent file naming convention
- Make a backup strategy where data is stored at least two different physical locations and preferably automatically backed up
- · Access control to confidential data
- Apply encryption at disk or folder level if needed
- · Create a consistent and standard versioning of the data files
- Determine the minimal documentation of the data that is required to find it, understand it and use it

Data sharing

- · Create proper data sharing procedures
 - o Consider agreements established in the Data acquisition phase, and evaluate/assess data sharing with other parties
 - o Be aware of the permission and consequence of sharing confidential data
- Copyright / Licensing
 - How should others use the data
 - o Who should be attributed for creating/gathering the data

Organizational Implications

In addition to the above mentioned actions, there are also a few things to consider to make data management a standard practice in daily operations.

I dati?

💴 HARVARD UNIVERSITY

Vision

Research Data Management @Harvard

Research data are an important asset to our University and our researchers. Thus, we want to support robust data management and documentation practices that ensure long term-access and re-use of Harvard research data.

640

Model Policy for Research Data Management (RDM) at Research Institutions/Institutes

1. PREAMBLE

The [name of research institution] recognizes the fundamental importance of research data1 and the management of related administrative records in maintaining quality research and scientific integrity, and is committed to pursuing the highest standards. The [name of research institution] acknowledges that correct and easily retrievable research data are the foundation of and integral to every research project. They are necessary for the verification and defence of research processes and results. RDM policies are highly valuable to current and future researchers. Research data have a long-term value for research and academia, with the potential for widespread use in society.

PERCHÉ I DATI **SONO IL FONDAMENTO DELLA SCIENZA E** DI UNA RICERCA RESPONSABILE

Perché occuparci dei dati?

Search Hours & locations Borrow & request Research support Abo

Libraries home » Data management » Share your data » Journal requirement

Data management

Home

Services +

Make a plan +

Store your data +

Share your data .

https://libraries.mit.edu/data-management/share/journal-requirements/

JOURNAL REQUIREMENTS

Many journals require that published articles be accompanied by the underlying research data. Data sharing policies often are found in the instructions for authors. We can help you interpret your journal's data sharing policy, and if your journal doesn't specify where and how you should share your data, we can help you find a data repository.

Select data-sharing requirements from key journals and publishers:

- Science's <u>Data Deposition Policy</u>. Scroll down to the "Data and Materials Availability after Publication" section
- SpringerNature's Data Sharing Policies, Journal example: Nature's policy on Availability of data, materials, and methods
- Wiley's Data Sharing Service
- American Geophysical Union's <u>Publication Data Policy</u>
- Sage's data submission guidelines

Data availability statements

While a data citation gives credit for the dataset in question, a data availability statement provides information about where these data may be found and under what conditions they may be accessed. The following examples are broadly applicable:

- Taylor & Francis
- SpringerNature
- PLOS

Resources for journal requirements for data sharing

- Data Sharing and Replication (scroll down to Journal Policies)
- Journal open-data policies

Perché occuparci dei dati?

The Washington Post Democracy Dies in Darkness

Health · Second Opinion

'We're opening everything': Scientists share coronavirus data in unprecedented way to contain, treat disease Feb.1, 2020

Two papers relying on hospital records of COVID-19 patients have been retracted because the company that purportedly analyzed the raw data won't allow their validity to be independently validated. AP PHOTO/MANU FERNANDEZ

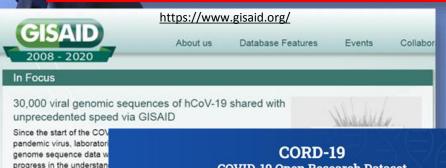
Two elite medical journals retract coronavirus papers over data integrity questions

By Charles Piller, Kelly Servick | Jun. 4, 2020 , 5:30 PM

June 4, 2020

Scientists are unraveling the Chinese coronavirus with unprecedented speed and openness

Just 10 days after a pneumonia-like illness was first reported among people who visited a seafood market in Wuhan, China, scientists released the genetic sequence of the coronavirus that sickened them. That precious bit of data, freely available to any researcher who wanted to study it, unleashed a massive collaborative effort to understand the


PERCHÉ NELLE CRISI SI CAPISCE LA LORO **IMPORTANZA**

idly spreading in China and beyond.

n an open-access repository for genetic Mesecar, a professor of cancer structural d his laboratory to start analyzing the DNA e to that of severe acute respiratory syndrome ned more than 8,000 people and killed nearly

800. Scientists at the National Institutes of Health's Rocky Mountain Laboratories in Montana asked a company to turn the information from a string of letters on a computer screen into actual DNA they could study in lab dishes.

At unprecedented speed, scientists are starting experiments, sharing data and revealing the secrets of the pathogen — a race that is made possible by new scientific tools and cultural norms in the face of a public health emergency.

and development of candi

are essential to design an

COVID-19 Open Research Dataset

The Semantic Scholar team at the Allen Institute for Al has partnered with leading research groups to provide CORD-19, a free resource of more than 63,000 scholarly articles about the novel coronavirus for use by the global research community.

https://www.semanticscholar.org/cord19

Perché occuparci dei datif

How and why you should manage your research data: a guide for researchers

An introduction to engaging with research data management DISC Guide

EVITARE DI PERDERLI

ALCUNI SONO
UNICI E
IRRIPETIBILI
(meteorologia)

ORGANIZZARLI PER
RENDERE PIÙ EFFICACE
LA RICERCA

VALIDAZIO CONTRO

MIGLIORARE INTEGRITÀ DELLA
RICERCA

(SE APERTI) ESSERE PIÙ VISIBILI

PERMETTERE
VALIDAZIONE E
CONTROLLI

(SE APERTI)
FAVORIRE
COLLABORAZIONI

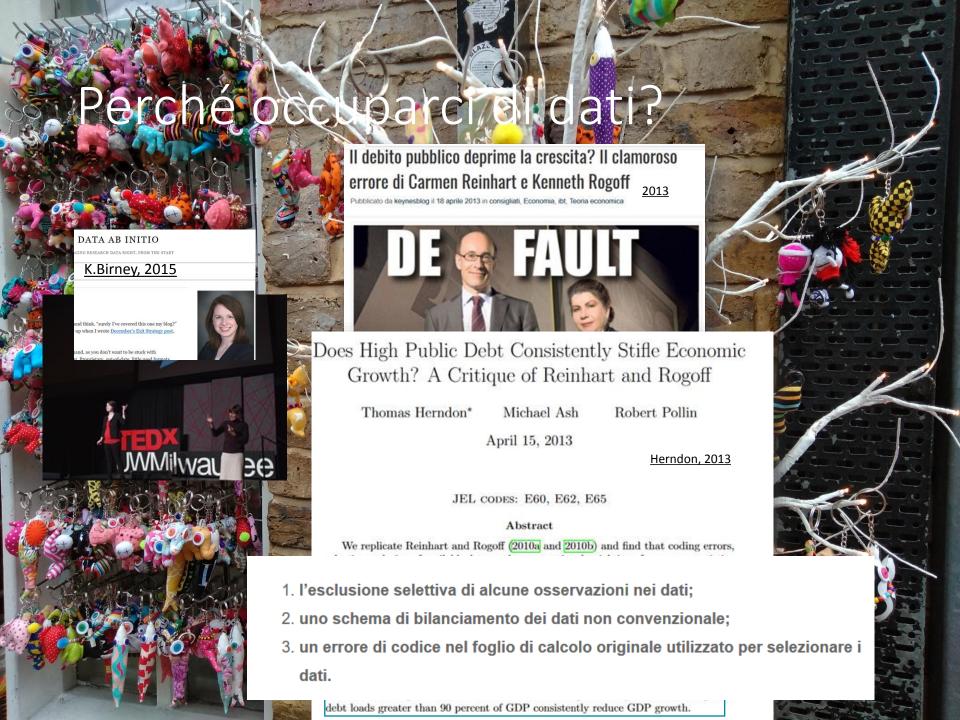
(SE APERTI)
FAVORIRE
RIUSO INEDITO

ESSERE RIPRODUCIBIL

Hubble Space Telescope

News

Text Size


Astronomers Find Elusive Planets in Decade-Old Hubble Dat

In a painstaking re-analysis of Hubble Space Telescope images from 1998, astronomers have found visual evidence for

Finding these hidden gems in the Hubble archive gives astronomers an invaluable time machine for comparing much earlier planet orbital motion data to more recent observations. It also demonstrates a novel approach for planet hunting in archive Hubble data.

Exoplanet HR 8799 System

«the coolest thing to do with your data will be thought of by someone else» [R.Pollock]

Perché occuparci dei dati?

WaveLab and Reproducible Research

Jonathan B. Buckheit and David L. Donoho
Stanford University, Stanford CA 94305, USA

An article about computational science in a scientific publication is **not** the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.

UN ARTICOLO SENZA I DATI È SOLO LA «PUBBLICITÀ» DELLA RICERCA

OR IT DIDN'T HAPPEN

ator, net/instance/64979477/case-closed-rudge-judy-data-pr-it-didnt-ha

No data?

Following

To me, data are like footnotes. I might not always read them, but I get suspicious if they are not there.

Traduci dalla lingua originale: inglese

12:49 - 27 feb 2018

https://twitter.com/alastairdunning/status/968453078218395648

2 Retweet 8 Mi piace

Data secrecy

Is withholding your data simply bad science, or should it fall under scientific misconduct?

A recent study sent data requests to 200 authors of economics articles where it was stated 'data available upon request'. Most of the authors refused. What does the scientific community think about those withholding their data? Are they guilty of scientific misconduct? Nicole Janz argues that if you don't share your data, you are breaking professional standards in research, and are thus committing scientific misconduct. Classifying data secrecy as misconduct may be a harsh, but it is a necessary step.

> Gold Standard Research Integrity

Questionable Research Practices Scientific Misconduct

Open data
Open code
Pre-registration
Version control

P-hacking
Sloppy statistics
Peer review abuse
Inappropriate research design
Not answering to replicators
Lying about authorships

Fabrication Falsification

Plagiarism

I dati creano ponti

Data creates a bridge between traditional disciplines, spawning discovery and innovation from the humanities to the hard sciences. Data dissolves barriers, opening up new channels of communication, lines of research, and commercial opportunities. Data will be the engine, the spark to create a better world for all.

World Economic Forum 2012, http://goo.gl/ExaGW

I dati creano ponti fra le discipline...
...e non è indifferente nel contesto
Mission-oriented di Horizon
Europe...

Mission areas

Missions in Horizon Europe

5 mission areas have been identified, each with a dedicated mission board an help specify, design and implement specific missions in Horizon Europe.

Mission area: Adaptation to climate change including societal transformation

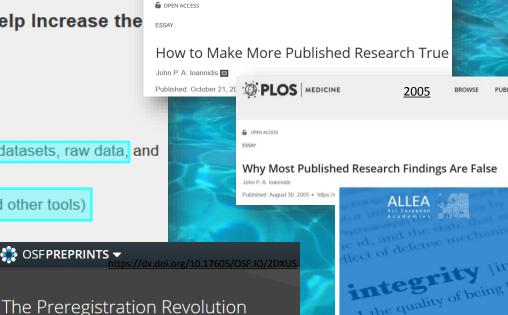
Mission area: Cancer

Mission area: Climate-neutral and smart cities

Mission area: Healthy oceans, seas, coastal and inland waters

Mission area: Soil health and food

Horizon Europe


I dati rendono la ricerca più trasparente

OSFPREPRINTS ▼

Created on: June 16, 2017 | Last edited: March 12, 2018

Box 1. Some Research Practices that May Help Increase the Proportion of True Research Findings

- Large-scale collaborative research
- Adoption of replication culture
- Registration (of studies, protocols, analysis codes, datasets, raw data, and results)
- Sharing (of data, protocols, materials, software, and other tools)
- Reproducibility practices
- Containment of conflicted sponsors and authors
- More appropriate statistical methods
- Standardization of definitions and analyses
- More stringent thresholds for claiming discoveries or "successes"
- Improvement of study design standards
- Improvements in peer review, reporting, and dissemination of research
- Better training of scientific workforce in methods and statistical literacy

Perspective | OPEN

A manifesto for reproducible science

human behaviour

Marcus R. Munafò R. Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J. Ware & John Manifesto, Jan 2017

The European

Code of Conduct for

Research Integrity

Research Integrity

Parliamo di dati

«pezzi» di conoscenza osservabili

ATLAS Preliminary 2011 + 2012 Data vs = 7 TeV: \(\int Ldt = 4.6-4.8 \) fb⁻¹ - combined — H → yy vs = 8 TeV: \(\int Ldt = 13.0 \text{ fb}^{-1} \) \longrightarrow H \rightarrow ZZ^(*) \rightarrow 4l - 68% CI --- 95% CL m_H [GeV]

Table S1. Number of reads per prokaryotic operational taxonomic unit (OTU) and sample from the cohort

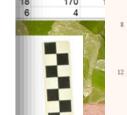
	010	AU1_IP1	AU1_TPZ	AU1_IP3	AU3_1P1	AU3_1P3	AU4_1P1	AU4_1P2	AU4_1P3	A
ı	OTU_1	261	76	1206	523	2131	25707	64473	60665	
g	OTU_2	49	52	117	43035	206	119	1152	539	
	OTU_9	148	162176			34	2	22858	1898	
1	OTU_6	21	17	8				1457	29	
9	OTIL 4	24	20			A A		19	85	
What was Warrants als							646	214		
١	Vilma van Wezenbeek								27	

Following

in cathedra pestiletic no sedu Sedilege on volutione a i lege cio inditabit die ac nett Ot crit tamās lignus, qua plantatus éscens occursus aquarus: quod fructus fuur dabit in tempoze suo. At folin cius non oflucta of a gengs factet pfperabut On fic impy, non fic sed

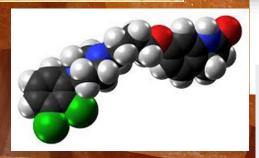
@wvanwezenbeek

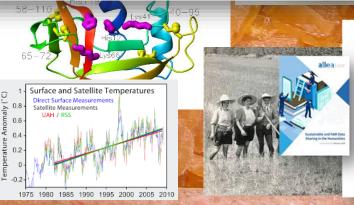
#osc2018 Wolfram Horstmann wants us to talk about datadiversity, like we do with biodiversity #openscience


Traduci il Tweet

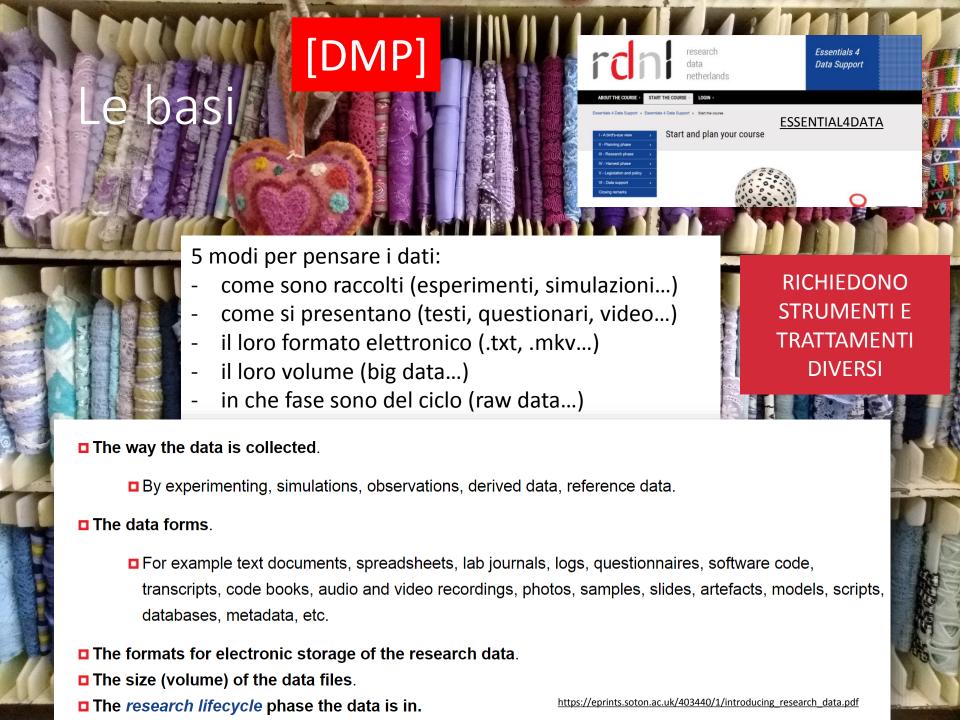
12:51 - 13 mar 2018

3 Retweet 1 Mi piace




tter.com/wyanwezenbeek/status/973527086685093893

Gaucelm Faidit


Ara nos sia guitz lo vers dieus Iesu Cristz, car de franca gen gaia soi per Lui partitz, on ai estat noiritz et onratz e grazitz; per so·l prec no·ill desplaia s'ieu m'en vauc marritz. A! gentils lemozis. el vostr'onrat pais lais de bella paria seignors e vezis e domnas ab pretz fis, pros, de gran cortesia, don planc e languis e sospir nueg e dia.

We could then define data in the humanities broadly as all materials and assets scholars collect, generate and use during all stages of the research cycle. In this report we focus on digital assets.

... e un maestro

https://www.taylorfrancis/com/books/9781498753180

Data Stewardship for Open Science

Implementing FAIR Principles

the worst way imaginable to communicate the outcome of the scientific process. If science has become indeed data driven and *data is the oil of the 21st century*, we better put data centre stage and publish data as first-class research objects, obviously with supplementary narrative where needed, steward them throughout their life cycle, and make them available in easily reusable format.

Yet another recent study claimed that only about 12% of NIH funded data finds its way to a trusted and findable repository. Philip Bourne, when associate director for data science at the U.S.A. National Institutes of Health coined the term dark data or the 88% that is lost in amateur repositories or on laptops. When we combine the results of the general reproducibility related papers and the findability studies,

GET ACCESS

PREVIEW PDF

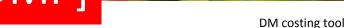
Monsense and more... @barendmons · 2 h

Finally! Tomorrow the book goes to the printer: Data Stewardship for Open Science: Implementing FAIR Principles

Traduci dalla lingua originale: inglese

${\bf Data\ Stewardship\ for\ Open\ Science:\ Implementing\ ...}$

Data Stewardship for Open Science: Implementing FAIR Principles has been written with the intention of making scientists, funders, and innovators in all disciplines an...

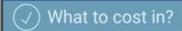

crcpress.com

In conclusion to this paragraph, my statement in 2005: Textnining? Why bury it first and then mine it again? [Mons, 2005] is still frighteningly relevant.

A good data steward publishes data with a supplementary article(Data(+)).

Data Management costing tool

ingtree


Welcome to the Data Management Costing Tool. This is for TU Delft researchers and staff to help determine costs and staffing requirements in project proposals. Let's start with some questions about your project which will help us estimate the data management needs of your project.

CI SONO COSTI PER CONSERVARE E GESTIRE I DATI... MA PENSIAMO A QUANTO COSTEREBBE **NON CONSERVARLI E NON GESTIRLI**

What will it cost to manage and share my data?

Infrastructure costs

- Digitisation
- Storage
- Licensing and Security __and
- · Sharing and Re-use
- Archiving

- Data wrangling
- Description and Documentation
- Metadata generation
- · Formatting and Cleaning
- Consent and Anonymisation

A Data Management Plan (DMP) can help to identify activities and potential costs at the outset ouf your project. Identifying RDM costs before you begin the project ensures that you will be able to request adequate funds to support good data management and enable data sharing.

- Eligible costs: When applying for funding, remember that there are typically two types of eligible costs; 'Direct costs', usually referring to staff time, travel, equipment, etc., and 'Indirect costs', generally covering things like administrative and financial management.
- Avoid 'double dipping': Most funders will cover justifiable costs related to RDM. However, if something is covered by indirect costs (e.g. institutional storage) you can't also claim it as a direct cost. Check with your institution on how best to include these in grant proposals.

Useful costing guides:

- OpenAIRE: How to identify and assess Research Data Management (RDM) costs
- LCRDM: Guide Research Data Management and Costs
- Horizon 2020 Costing Guide
- · UK Data Service: Data management costing tool and checklist

How much could management & deposit cost?

Some factors that affect RDM costs...

Security of potenially sensitive data

Length of preservation

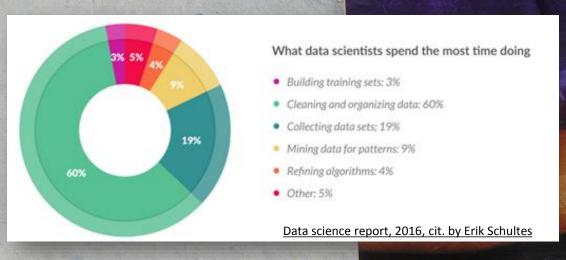
Different repositories apply different charging models. Some apply a fixed-fee per data package plus an amount over a certain volume, while others only apply variable fees depending on the data volume. Some may not charge at all.

Based on these examples, we have performed some comparative calculations. The cheapest repository changes at different points so shop around!

of data could cost you between €0 - €109 to deposit

of data could cost you between €245 - €340 to deposit

of data could cost you between €790 - €906 to deposit

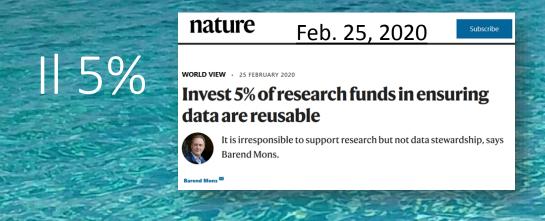


resources available here

Cost of not having FAIR research data

Cost-Benefit analysis for FAIR research data

Following this approach, we found that the annual cost of not having FAIR research data costs the European economy at least €10.2bn every year. In addition, we also listed a number of consequences from not having FAIR which could not be reliably estimated, such as an impact on research quality, economic turnover, or machine readability of research data. By drawing a rough parallel with the European open data economy, we concluded that these unquantified elements could account for another €16bn annually on top of what we estimated. These results relied on a combination of desk research, interviews with the subject matter experts and our most conservative assumptions.



10,2 bn

16 bn

26,2 bn

Bunk. First, taking care of data is an ethical duty, and should be part of good research practice. Second, if data are treated properly, researchers will have significantly more time to do research. Consider the losses incurred under the current system. Students in PhD programmes spend up to 80% of their time on 'data munging', fixing formatting and minor mistakes to make data suitable for analysis — wasting time and talent. With 400 such students, that would amount to a monetary waste equivalent to the salaries of 200 full-time employees, at minimum. So, hiring 20 professional data stewards to cut time lost to data wrangling would boost effective research capacity. Many top universities are starting to see that the costs of not sharing data are significant and greater than the associated risks. Data stewardship offers excellent returns on investment.

I tell research institutions that, on average, 5% of overall research costs should go towards data stewardship. With €300 billion (US\$325 billion) of public money spent on research in the European Union, we should expect to spend €15 billion on data stewardship. Scientists, especially more experienced ones, are often upset when I say this. They see it as 5% less funding for research.

- PRENDERSI CURA DEI DATI È ETICO
 - ASSUMERE DATA
 STEWARDS FA

 RISPARMIARE TEMPO
 - FAIR=FULLY
 ARTIFICIAL

 INTELLIGENCE READY

Funders hold the stick: they should disburse no further funding without a properly reviewed and budgeted data-stewardship plan. The carrot is that FAIR data allow much more effective artificial intelligence (FAIR can also mean 'fully AI ready'), which will open up unprecedented research opportunities and increase reproducibility.

Parte II

GESTIRE I DATI, RENDERLI FAIR, SE POSSIBILE OPEN

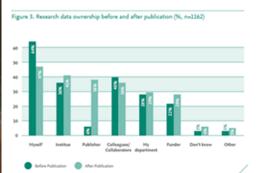
[il fondamento] [DMP]

Information Guide: Introduction to Ownership of Rights in Research Data. CREATe, University of Glasgow, 2018

Burrow, S. , Margoni, T. and McCutcheon, V. (2018) Information Guide: Introduction to Ownership of Rights in Research Data. CREATe, University of Glasgow, 2018. Documentation, University of Glasgow.

http://eprints.gla.ac.uk/171314/

Guides for Researchers


How do I know if my research data is protected?

Learn more about what is research data and their protection by intellectual property rights

OpenAIRE

I DATI NON SONO «MIEI» NON ESISTE COPYRIGHT PERCHÉ NON SONO CREATIVI

This time though it happened. What it was: 64% of researchers believe they own the data they generated for their research.

The result comes from a solid piece of academic research based on equally solid (open) data. The study and the report 'Open Data the Researcher Perspective' were done by CWTS / Leiden and Elsevier. Credit giving, check.

Of course, the study reports

Following

repeat with me: #researchdata is NOT mine. I was paid to get it, I'll get a #nobel 4 it, but it's NOT mine linkedin.com/pulse/repeat-m ... #opendata

Traduci dalla lingua originale: inglese

Repeat with me: research data is not mine

Seldom do I see something that truly shakes me at work. You know, work is work, I am no neurosurgeon, no médecin sans frontières nor am I a social

linkedin.com

11:18 - 12 apr 2017

14 Retweet 18 Mi piace

Lusoli, Apr.2017

CHARLES A MARCH

2019

SERVICES

PPORT OPEN SCIENCE IN EURO

BOUT

Q

More Information about the 2019 webinar series.

data management plan | OA to research data | open science

OpenAIRE

Aspetti legali nella gestione dei dati della ricerca

Thomas Margoni
University of Glasgow - CREATe
OpenAIRE project

Support

RESOURCES

ipen Science Prim Juides

Factsheets

HELPDESK

AQs

TRAINING

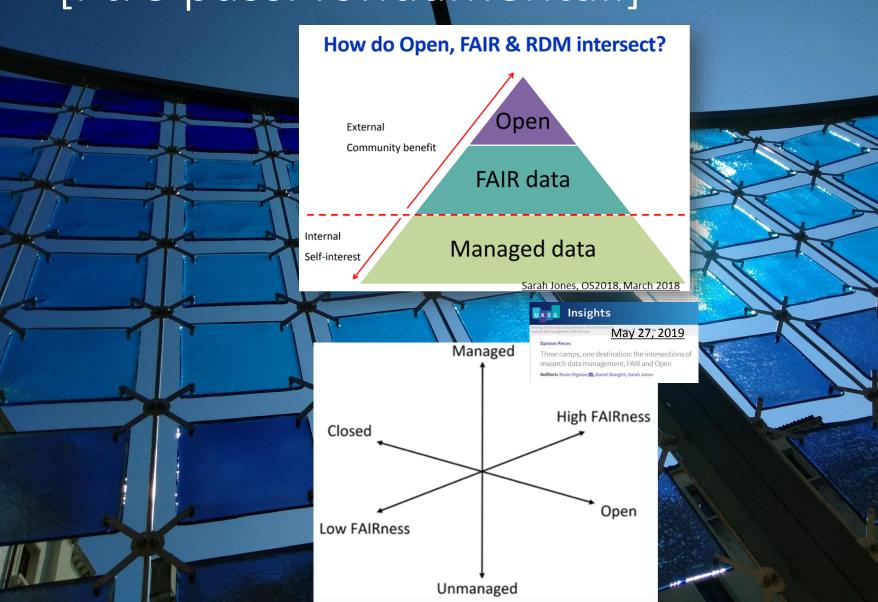
Webinars

Workshops

Community of Practice

<u> 2020</u>

OpenAIRE Legal Policy Webinars


Supporting researchers on the reuse of data: legal aspects to consider

29th April and May 4th, at 2 PM CEST

- POSSONO ESSERCI ALTRE FORME DI PROTEZIONE DEI DATI (ES. CONTRATTI) - PER DATI CHE RICADONO SOTTO GDPR VA SEMPRE ESPLICITATA LA BASE LEGALE SULLA QUALE SI CONDUCE LA RICERCA

[i tre passi fondamentali]

1. I dati vanno gestiti

than their creators may have anticipated. In the world of research, such a value-

adding process is a significant contributor to the much desired achievement of impact.

2. I dati DEVONG ssere FAIR

To be Findable:

- F1. (meta)data are assigned a globally unique and eternally persistent identifier.
- F2. data are described with rich metadata.
- F3. (meta)data are registered or indexed in a searchable resource.
- F4. metadata specify the data identifier.

TO BE ACCESSIBLE:

- Al (meta)data are retrievable by their identifier using a standardized communications protocol.
- A1.1 the <u>protocol</u> is open, free, and universally implementable.
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary.
- A2 metadata are accessible, even when the data are no longer available.

TO BE INTEROPERABLE:

- 11. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles.
- 13. (meta)data include qualified references to other (meta)data.

TO BE RE-USABLE:

- R1. meta(data) have a plurality of accurate and relevant attributes.
- R1.1. (meta)data are released with a clear and accessible data usage license.
- R1.2. (meta)data are associated with their provenance.
- R1.3. (meta)data <u>meet domain-relevant community standards.</u>

«ACCESSIBLE»

≠«OPEN»

= DOVE E A QUALI

CONDIZIONI

I DATI SONO

ACCESSIBILI

Serve formazione?

[DMP]

Plan

In this introductory tour, you will become aware of what data management and a data management plan (DMP) are and why they are important. General concepts such as social science data and FAIR data will be explained. Based on our recommendations and good practice examples, you will be able to start writing your DMP.

If you are looking for good practices in designing an

and organising your data files within suitable folder

appropriate data file structure, naming, documenting

To be able to plan a storage and backup strategy, you will learn about different storage and backup solutions and their advantages and disadvantages. Also, measures to protect your data from unauthorised access with strong passwords and encryption will be explained.

Process

Protect

This chapter highlights your legal and ethical obligations and shows how a combination of gaining consent, anonymising data, gaining clarity over who owns the copyright to your data and controlling access can enable the ethical and legal sharing of data.

Archive & Publish

When you arrive at this chapter you will have learnt to differentiate between currently available data publication services. You will also find a number of stepping stones on how to promote your data.

structures, this chapter is for you.

Organise & Document

How can you discover and reuse existing or previously collected datasets?

https://www.cessda.eu/Training/Training-Resources/Library/Data-Management-Expert-Guid

Con un supporto pratico [DMP]

ALLA FINE D OGNI MODULO
TROVATE «ADAPT YOUR
DMP» PER APPLICARE I
CONCETTI CHE AVETE
APPENA IMPARATO

Adapt your DMP: part 6

This is the sixth 'Adapt your DMP' section in this tour guide. To adapt your DMP, consider the following elements and corresponding questions:

① Versioning

In order to be able to link your work to other research, it might be useful to build on established terminologies as well as commonly uses coding and soft- and hardware wherever this is possible.

. Which software and hardware will you use? How does this relate to other research?

If applicable:

- Will established terminologies/ontologies (i.e. structured controlled vocabularies) be used in the project? If not, how does yours relate to established ones?
- Which coding is used (if any)? How does this relate to other research?

⊕ Deposit your data

- Will the data you produce and/or used in the project be useable by third parties, in particular after the end of the project?
- · Which data and associated metadata, documentation and code will be deposited?
- · What methods or software tools are needed to access the data?
- · Is documentation about the software needed to access the data included?
- Is it possible to include the relevant software (e.g. in open source code)?
- · What data quality assurance processes will you apply?

cessda TRAINING

ARTHENOS

TRAINING MODULES FOR TRAINERS FOR LEARNERS

MANAGE, IMPROVE AND **OPEN UP YOUR RESEARCH**

AND DATA

About the module

This module will look at emerging trends and best practice in data management, quality assessment and IPR issues

We will look at policies regarding data management and their implementation, particularly in the framework of a Research Infrastructure

Learning Outcomes

By the end of this module, you should be able to:

https://training.parthenos-project.eu/sample-page/manage-improve-and-open-up-your-research-and-data/

How does humanities data tend to be different?

There are problems with sharing and managing the humanistic data, however. First of all, much of it is not digital. Humanists still tend to gravitate toward multimodal knowledge creation systems, hybrid digital and technical worlds that resist norms of deposit and reuse. Second, the semiotic systems of humanities data can be quite personal and individual; we prepare our sources to be useful for us, and what works for our research questions and personal epistemic instruments may not work at all for anyone else. Finally, and perhaps most importantly, cultural data is seldom if ever 'raw,' and seldom, if ever, under the sole ownership of the researcher him or herself. The records of human activity and creativity belong to everyone and no one, they are often preserved and curated by dedicated public institutions or private publishers. Whatever humanities data is, it is not simple!

Introduction to Research Infrastructures

BROWSE

Management Challenges in Research Infrastructures

Introduction to Collaboration in Research Infrastructures

Manage, Improve and Open up your Research and Data

Ezen torony mely helytelenül a történetileg hires csonka toronynak tartatik 1252 körül IV. Bela k. alatt a dömések által építtetett sz. Miklósnak szentelt egyház tornya volt. Az egyház éjszaki oldalán a mai tyas k.

gymr PDARIAH-CAMPUS 1477. ban (15 a török janake az eg

May 2019

ok kor-

löölnak

d palotá=

or mind

it képe.

DARIAH Pathfinder to Data Management Best Practices in the **Humanities**

Written by Erzseibet Toth-Czifra

Source: DARIAH Pathfinders, DARIAH Topics: Data management

1. Why research data management?

Systematically planning how you will collect, document, organize, manage, share and preserve your data has many benefits. It helps to build a common framework of understanding with your collaborators and other stakeholders such as data archivists or professionals of GLAM institutions. But you can also think of your future self as your primary collaborator, imagining yourself looking for

THE PARTY OF STREET STREET, ST

TABLE OF CONTENTS

E le scienze umane?

Sustainable and FAIR Data Sharing in the Humanities

ALLEA Report | February 2020

10. THE RISK OF LOSING THE THICK DESCRIPTION: DATA MANAGEMENT CHALLENGES FACED BY THE ARTS AND HUMANITIES IN THE EVOLVING FAIR DATA ECOSYSTEM Erzsébet Tóth-Czifra

RECOMMENDATIONS

- » Think of all your research assets as research data that could be potentially reused by other scholars. Consider how useful it would be for your own work if others shared their data.
- » Familiarise yourself with the FAIR Data Principles before you start collecting data and building corpora e.g. FORCE11: the FAIR Data Principles, GO-FAIR: FAIR Data Principles and discuss with colleagues and experts to build a better understanding.
- » Digitally document all your research and data collection work -- at the beginning of a project it is difficult to judge which information of the research process will be important and valuable later on.
- » Use well-established tools to facilitate your research work, as many of them allow data sharing e.g. MIT Libraries Digital Humanities: Tools and Resource Recommendations.
- » Browse humanities datasets and consider whether your own assets could be published in a similar fashion (e.g. <u>Humanities Commons</u>, <u>UK Data Archive</u>, <u>ARCHE re3data.org</u> filtered for humanities).
- » When you start producing data, keep this maxim of Open Science in mind: data should be 'as open as possible and as closed as necessary'.

235

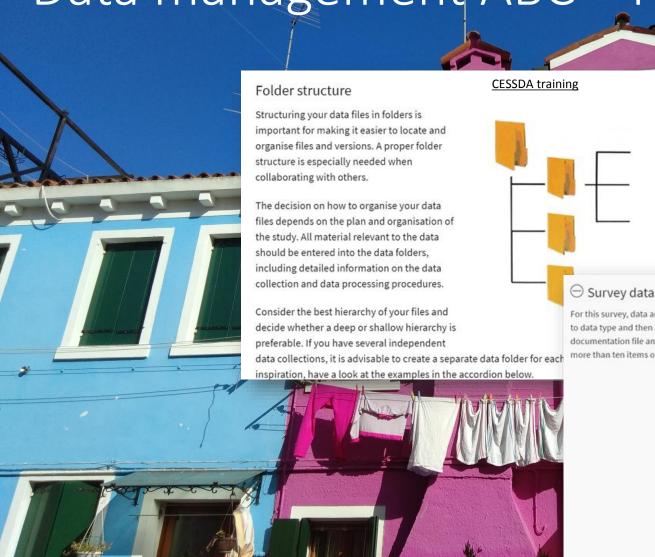
Data management ABC - File naming

[DMP]

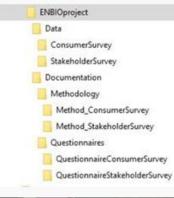
File naming conventions

The conventions comprise the following 13 rules. Follow the links for examples and explanations of the rules.

- 1. Keep file names short, but meaningful
- 2. Avoid unnecessary repetition and redundancy in file names and file paths.
- 3. Use capital letters to delimit words, not spaces or underscores
- 4. When including a number in a file name always give it as a two-digit number, i.e. 01-99, unless it is a year or another number with more than two digits.
- 5. If using a date in the file name always state the date 'back to front', and use four digit years, two digit months and two digit days: YYYYMMDD or YYYYMM or YYYY or YYYY-YYYY.
- 6. When including a personal name in a file name give the family name first followed by the initials.
- 7. Avoid using common words such as 'draft' or 'letter' at the start of file names, unless doing so will make it easier to retrieve the record.
- 8. Order the elements in a file name in the most appropriate way to retrieve the record.
- 9. The file names of records relating to recurring events should include the date and a description of the event, except where the inclusion of any of either of these elements would be incompatible with rule 2.
- 10. The file names of correspondence should include the name of the correspondent, an indication of the subject, the date of the correspondence and whether it is incoming or outgoing correspondence, except where the inclusion of any of these elements would be incompatible with rule 2.
- 11. The file name of an email attachment should include the name of the correspondent, an indication of the subject, the date of the correspondence, 'attch', and an indication of the number of attachments sent with the covering email, except where the inclusion of any of these elements would be incompatible with rule 2.
- 12. The version number of a record should be indicated in its file name by the inclusion of 'V' followed by the version number and, where applicable, 'Draft'.
- 13. Avoid using non-alphanumeric characters in file names.

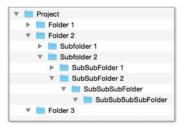


Naming conventions


Make finding electronic records easier

Data management ABC - File naming

For this survey, data and documentation files are held in separate folders. Data files are to data type and then according to research activity. Documentation files are organised documentation file and research activity. It helps to restrict the level of folders to three more than ten items on each list.


Data management ABC -

Readme file

Sample README fileOrg.docx

Folder structure:

Sketch out here or insert a screenshot of your folder structure. Note, if including a screenshot, expand all folders to show the full hierarchy.

[DMP]

MIT Libraries README: File & Folder Schema (Example)

This document is for recording your file-naming schemas and folder structures developed in the Naming and organizing your files and folders worksheet. This example README includes descriptions and examples for your guidance. See the README: File & Folder Schema (Template) for a blank version.

For guidance on creating readmes to document information on datasets, see: Guide to writing "readme" style metadata. Cornell Research Data Management Service Group. https://data.research.cornell.edu/content/readme

Overview:

Project/Lab Name: Name t

Name the project for which this file organization documentation refers. If it documents the organization schema for a research/lab group, include that

here.

Ex: Our Lab, Project 123

Creator:

Who created the file organization schema? This is important information as a user may need to get clarification, suggest a revision of the schema, etc. Include the institution/address/email for contacting this person.

README: File & Folder Schema (Example)

File naming schema:

File type: Filename schema: Microscope image

Filename schema: [date] [microscope] [imageNumber]
Schema key: date: date of image capture in YYYYMMDD format

microscope: name/model of microscope used

imageNumber: written in sequential formatting 00X - XXX

Example filename: 20180118_mic53_001.jpg

File type

Filename schema

Schema key

Example filename

Microscope image [Date]_[microscope]_[image Number] Date: Date of image capture in

capture in YYYYMMDD format microscope: name of microscope used imageNumber: written in sequential

formatting 00X

20180118_mic53_001.jpg

Filename abbreviations

Use this section to document any abbreviations used in the file-naming schemes described above.

Filename descriptor

Abbreviations key

Ex: Location	ATL: Atlanta BOS: Boston
Ex: Microscope (name)	mic53: microscope 53, located in room 1

MIT data management

Data management A Readme file

Introductory information

- Title of the dataset
- For each file or group of similar files, a short description of what data it contains
- Explain the file naming convention, if applicable
- o Format of the file if not obvious from the file name
- If the data set includes multiple files that relate to each other, the relationship between the files or a description of the file structure that holds them
- Contact information; in case users have questions regarding the data files

Methodological information

- Method description for collecting or generating the data, as well as the methods for processing data, if data other than raw data are being contributed
- Any instrument-specific information needed to understand or interpret the data
- Software (including version number) used to produce, prepare, rende compress, analyze and/or needed to read the dataset, if applicable
- Standards and calibration information, if appropriate

Guidelines for README

Guidelines for creating a README file

A readme file provides information about a dataset and is intended to help ensure that the data can be correctly interpreted, by yourself at a later date or by others when sharing or publishing data.

A readme file must be submitted along with the dataset file(s).

The outline below should be completed with information relevant to the submitted dataset.

Best practices

- Create one readme file for each dataset
- . Name the file README; not readme, read me, ABOUT, etc.
- Write your readme document as a plain text file; save as README.txt or README.md when writing in <u>Markdown</u>. Or use README.pdf when text formatting is important for your file.

3. Data specific information

- Full names and definitions (spell out abbreviated words) of column headings for tabular data
- Units of measurement
- Definitions for codes or symbols used to record missing data
- Specialized formats or abbreviations used

4. Sharing and Access information

Licenses or restrictions placed on the data; Licenses allow you to specify the 'terms-of-use' for your data. The archive provides a license that is explained in its <u>terms of use</u> and applies this license as default selection. You can use this licensing <u>wizard</u> to help you to pick a more appropriate license for the use of your data. This license will then be displayed in the metadata.

Data management ABC - Versioning

Data versioning

f 💆 in 🚳 🔀 🖶 +SHARE

Unlike the software domain, the data community doesn't yet have a standard numbering system. Three epresentative data version numbering patterns in use include:

Numbering system 1

Numbering system 2 Numbering system 3

What tools are available for data versioning?

There is no one-size-fit-all solution for data versioning and tracking changes. Data come in different forms and are managed by different tools and methods. In principle, data managers should take advantage of data management tools that support versioning and track changes.

Example approaches include:

Git (and Github) for Data ☐ (with size <10Mb or 100k rows) which allows:

- effective distributed collaboration you can take my dataset, make changes, and share those back with me (and different people can do this at once)
- provenance tracking (i.e. what changes came from where)
- sharing of updates and synchronizing datasets in a simple, effective, way.

Data versioning at ArcGIS

· Users of ArcGIS can create a geodatabase version, derived from an existing version. When you create a version, you specify its name, an optional description, and the level of access other users have to the

What do we mean by the term 'data versioning'?

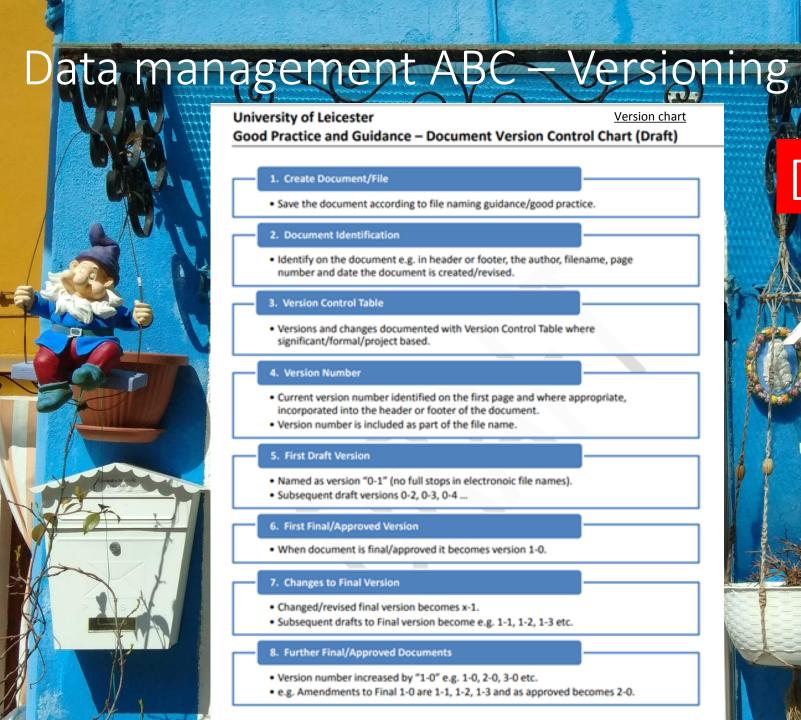
A version is "a particular form of something differing in certain respects from an earlier form or other forms of the same type of thing ". In the research environment, we often think of versions as they pertain to resources such as manuscripts, software or data. We may regard a new version to be created when there is a change in the structure, contents, or condition of the resource.

In the case of research data, a new version of a dataset may be created when an existing dataset is reprocessed, corrected or appended with additional data. Versioning is one means by which to track changes associated with 'dynamic' data that is not static over time.

Why is data versioning important?

Increasingly, researchers are required to cite and iden to support research reproducibility and trustworthiness accurately indicate exactly which version of a dataset accessed via a web service.

Numbering system 1


Data versioning follows a similar path to software versioning, usually applying a two-part numbering rule: Major.Minor (e.g. V2.1). Major data revision indicates a change in the formation and/or content of the dataset that may bring changes in scope, context or intended use. For example, a major particularly challenging where the data to be cited are revision may increase or decrease the statistical power of a collection, require change of data access interfaces, or enable or disable answering of more or less research questions. A Major revision may incorporate:

- substantial new data items added to /deleted from a collection
- data values changed because temporal and/or spatial baseline changes
- additional data attributes introduced
- changes in a data generation model
- format of data items a changed
- major changes in upstream datasets.

Minor revisions often involve quality improvement over existing data items. These changes may not affect the scope or intended use of initial collection. A Minor revision may include:

- · renaming of data attribute
- correction of errors in existing data
- re-running a data generation model with adjustment of some parameters
- minor changes in upstream datasets.

University of Leicester Version chart Good Practice and Guidance - Document Version Control Chart (Draft)

1. Create Document/File

Save the document according to file naming guidance/good practice.

2. Document Identification

 Identify on the document e.g. in header or footer, the author, filename, page number and date the document is created/revised.

3. Version Control Table

· Versions and changes documented with Version Control Table where significant/formal/project based.

4. Version Number

- Current version number identified on the first page and where appropriate, incorporated into the header or footer of the document.
- Version number is included as part of the file name.

5. First Draft Version

- Named as version "0-1" (no full stops in electronoic file names).
- Subsequent draft versions 0-2, 0-3, 0-4 ...

6. First Final/Approved Version

When document is final/approved it becomes version 1-0.

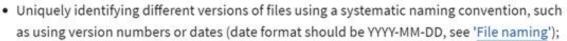
7. Changes to Final Version

- Changed/revised final version becomes x-1.
- Subsequent drafts to Final version become e.g. 1-1, 1-2, 1-3 etc.

8. Further Final/Approved Documents

- Version number increased by "1-0" e.g. 1-0, 2-0, 3-0 etc.
- e.g. Amendments to Final 1-0 are 1-1, 1-2, 1-3 and as approved becomes 2-0.

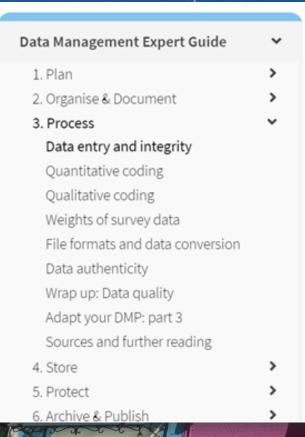
Data management ABC – Versioning



[DMP]

Version control

Version control can be done through:


cessda

TRAINING

- Record the date within the file, for example, 20010911_Video_Twintowers;
- Process the version numbering into the file name, for example, HealthTest-00-02 or HealthTest_v2;
- Don't use ambiguous descriptions for the version you are working on. Who will know whether MyThesisFinal.doc, MyThesisLastOne.doc or another file is really the final version?
- · Using version control facilities within the software you use;
- Using versioning software like Subversion (2017);
- Using file-sharing services with incorporated version control (but remember that using commercial cloud services as the Google cloud platform, Dropbox or iCloud comes with specific rules set by the provider of these services. Private companies have their own terms of use which applies for example to copyrights);
- Designing and using a version control table. In all cases, a file history table should be
 included within a file. In this file, you can keep track of versions and details of the changes
 which were made. Click on the tab to have a look at an example which was taken from the
 UK Data Service (2017c).

 CESSDA training

Data management ABC – Data entry

- \oplus Check the completeness of records
- \oplus Reduce burden at manual data entry
- Minimise the number of steps
- Conduct data entry twice
- Perform in-depth checks for selected records
- Perform logical and consistency checks
- Automate checks whenever possible

Data Management ABC -

Download

F.A.Q

Licensing

External Links

Contact Us

LUNGO O BREVE TERMINE?

Checksum Checker

Software for Digital Preservation

Download version 3.0.1, released 25 March 2014 AEST

Checksum Checker is free and open source software developed by the National Archives of Australia. Checksum Checker is a piece of software that is used to monitor the contents of a digital archive for data loss or corruption.

Checksum Checker is a component of the Digital Preservation Software Platform (DPSP).

Features

As part of the Digital Preservation Recorder (DPR) workflow, checksums are generated for each Archival Information Package (AIP). Checksum Checker generates a new checksum for each AIP and compares it against the stored checksum. If the checksums do not match, then the AIP is flagged as being corrupt.

Checksum Checker incorporates the following features:

- · Checksum Checker functions as a service.
- Checksum Checker sends automated emails to a nominated administrator email address, coinciding with certain events (such as the start of a checking run or when an error is encountered).

hecksum Checker is released under the GPLy3, and is available

	Storage Solutions	Advantages	Disadvantages	Suitable for
	Personal Computer & Laptop	Always available Portable	Drive may fail Laptop may be stolen	Temporary storage
	Networked drives File servers managed by your university, research group or facilities like a NAS-server	Regularly backed up Stored securely in a single place	Costs	Master copy of your data (if enough storage space is provided)
	External storage devices USB flash drive, DVD/CD, external hard drive	Low cost Portability	Easily damaged or lost	Temporary storage
	Cloud services	Automatic synchronization between folders and files Easy to access and use	It's not sure whether data security is taken care of You don't have direct influence on how often backups take place and by whom	Data sharing

Organize and document research data. Make digital versions of paper data documentation in a PDF/A format (suitable for long-term storage).

3

4

5

Data Management ABC- backup and storage

Portable devices Cloud storage Local storage Networked driv Laptops, tablets, external hard-drives, flash drives and Compact Discs Disadvantages/Risks Advantages Pred (sen data Allow easy transport of data and files · Easily lost, damaged, or Use without transmitting them over the stolen and may, therefore, enci Internet. This can be especially helpful offer an unnecessary security pass when working in the field. risk.

· Not robust for long-term

your data and files.

· Possible quality control

issues due to version

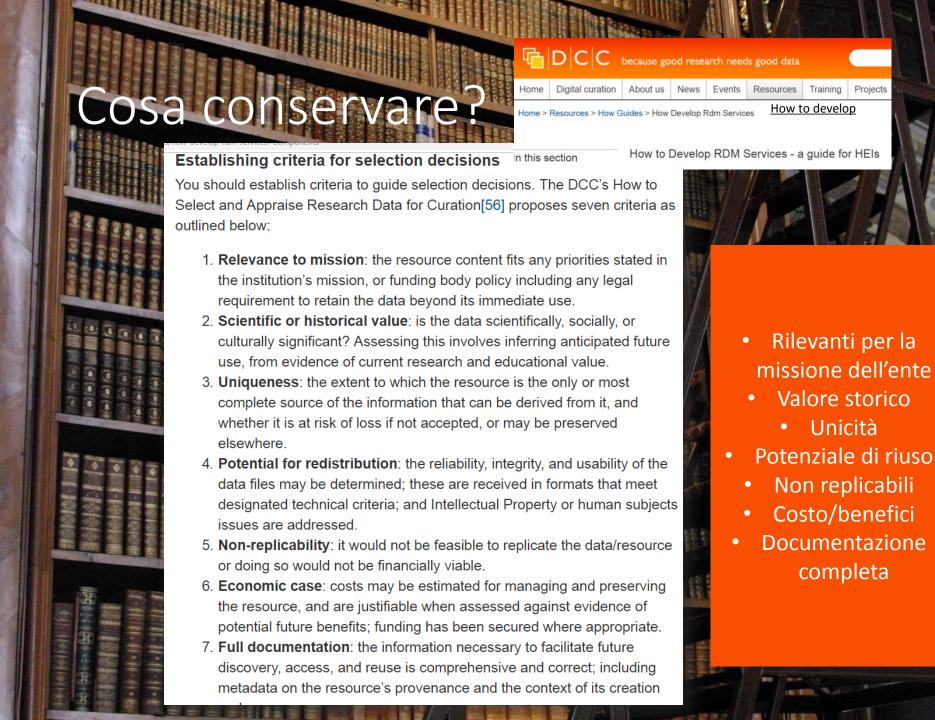
confusion.

storage or master copies of

· Low-cost solution.

Advantages

Disadvantages/Risks


Precautions for (sensitive) personal

- Automatic backups.
- Often automatic version control.
- Not all cloud services are secure. May not be suitable for sensitive data containing personal information about EU citizens.
- Insufficient control over where the data is stored and how often it is backed up.
- Free services by commercial providers (e.g. Google Drive, Dropbox) may claim rights to use content you manage and share them for their own purposes.
- Data can be lost if your account is suspended or accidentally deleted, or if the provider goes out of business.
- Encrypt all (sensitive) personal data before uploading it to the cloud. This is particularly important to avoid conflict with European data protection regulations if you do not know in which countries servers used for storage and backup are located (see 'Security' for more information on encryption; also see 'Protecting data').

- Recommendations
 - Do: use cloud services for granting shared, remote and easy access to data and other files to all involved in the project.
 - . Do: Read the terms of service. Especially focus on rights to use content given to the service provider.
 - . Do: Opt for European, national, or institutional cloud services which store data in Europe if possible.
 - B2drop (EUdat, n.d.) is an example of a European cloud storage solution.
 - SWITCHdrive (SWITCH, 2017) is a Swiss solution.
 - DataverseNL (Data Archiving and Networked Services, 2037) is an example of a service for Dutch researchers that allows the storage and sharing of data both during and after the research period.
 - . Don't: make this your only storage and backup solution.
- Don't: use for unencrypted (sensitive) personal data.

CESSDA Guide

Ci sono strumenti diversi per esigenze diverse (durante/al termine). Durante, dovete anche poterci lavorare con il team

Imparare a gestir

FOSTER

Resources

Event

Course

Search for.

Q

Open Access Publishing
This course will help you become skilled in makin

This course will help you become skilled in making your publications openly accessible in line with funders' requirements and in the wider context of Open Science.

Sharing Preprints
This course introduces the practice of sharing preprints and he to see how'it can support your research.

Managing and Sharing Research Data

Data-driven research is becoming increasingly common in a wide range of academic disciplines, from Archaeology to Zoology, and spanning Arts and Science subject areas alike. To support good research, we need to ensure that researchers have access to good data. Upon completing this course, you will:

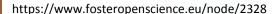
- · understand which data you can make open and which need to be protected
- · know how to go about writing a data management plan
- · understand the FAIR principles
- be able to select which data to keep and find an appropriate repository for them
- . learn tips on how to get maximum impact from your research data

Start the Free Cours

Full details

Level of knowledge: Introductory: no previous knowledge is required

Topics



What are personal data? Click the plus sign to expand the text box + What are personal data?

+ Protecting personal data

This course covers data protection in particular and ethics more generally. It will help you understand the basic principles of data protection and introduces techniques for implementing data protection in your research processes. Upon completing this course, you will know:

- · what personal data are and how you can protect them
- · what to consider when developing consent forms
- · how to store your data securely
- · how to anonymise your data

Data Protection and Ethics

Start the Free Cours

+ Legal requirements - EU General Data Protection Regulation (GDPR)

Legal requirements - GDPR research exemptions

Full details

Level of knowledge: Introductory: no previous knowled is required

Topics

[dati personali]

Personal data can only be processed when there is a valid legal basis to do so. The GDPR recognises six bases (grounds):

- · consent of the data subject
- · necessary for the performance of a contract
- legal obligation placed upon the data controller
- necessary to protect the vital interests of the data subject
- carried out in the public interest or in the exercise of official authority (public task)
- · legitimate interest pursued by the data controller

The research exemption

The GDPR contains an exemption which entails that some of the principles above are slightly different when you collect and process personal data for research purposes. This is called the 'research exemption'.

Processing for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes, shall be subjected to appropriate safeguards, in accordance with this Regulation, for the rights and freedoms of the data subject. Those safeguards shall ensure that technical and organisational measures are in place in particular in order to ensure respect for the principle of data minimisation. Those measures may include pseudonymisation provided that those purposes can be fulfilled in that manner. Where those purposes can be fulfilled by further processing which does not permit or no longer permits the identification of data subjects, those purposes shall be fulfilled in that manner | General Data Protection Regulation, Article 89.

In practice, this means that Principle II. and V. are less strict. Further processing of personal data for the purposes of archiving, scientific or historical research purposes and statistical purposes is not



[personal data]

<u>CESSDA guide</u> Data Management Expert Guide

The participant is informed of what will be done with the data and data processing should be done accordingly.

II. Keep to the original purpose

Data should be collected for specified, explicit and legitimate purposes and not further processed in a manner that is incompatible with those purposes.

III. Minimise data size

Personal data that are collected should be adequate, relevant and limited to what is necessary.

IV. Uphold accuracy

Personal data should be accurate and, where necessary kept up to date. Every reasonable step must be taken to ensure that personal data that are inaccurate are erased or rectified without delay.

V. Remove data which are not used

Personal data should be kept in a form which permits identification of data subjects for no longer than is necessary for the purposes for which the personal data are processed.

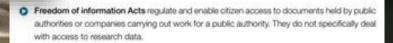
VI. Ensure data integrity and confidentiality

Personal data are processed in a manner that ensures appropriate security of the personal data, including protection against unauthorised or unlawful processing and against accidental loss, [leggi applicabili]

Privacy

Science Europe 2018

- Personal Data Protection Acts are present in all European countries and concern general laws regulating the protection of personal data. They are based on European Directive 95/46/EC.⁹ This Directive will be replaced in the near future by the General Data Protection Regulation (GDPR), ¹⁰ which all EU Member States will have to implement in their national legislation by May 2018.
- Obligations to Report Data Leakage Acts are additions to the Personal Data Protection Acts.
 They deal with the publication of personal data and contain sanctions in the form of penalties.
- Medical Treatment Agreement Acts regulate the use and preservation of personal (patient) data in and for medical research.
- Scientific Medical Research with Humans Acts regulate scientific research in the medical field, in particular how to handle personal health-related data. These make ethical reviews compulsory for all medical research projects.


Intellectual Property Rights

- Copyright Acts regulate the rights of the creator of a work. One distinguishes between exploitation rights and personal intellectual rights ('moral rights').
- The Database Rights Act recognises the investments made in creating and/or compling a database. It is based on European Directive 96/9/EC.¹¹
- Related Rights Acts or Neighbouring Rights Acts mostly refer to the rights of performers, phonogram producers, and broadcasting organisations.
- Patent Acts are for the protection of patents. Publication of research results (including data) is restricted during the application stage of a patent.

Public data

- Public Records Acts (Public Archives Acts) oblige all public administration offices and services to preserve their documents and transfer these, after appraisal and selection, to public archives.
- Public Sector Information Acts (concerning re-usability of public data) are based on European Directive 2013/37/EU^{III} that focuses on the economic aspects of the re-use of public information. It encourages Member States to make as much of this information as possible available for re-use. This also covers content held by museums, libraries, and archives, but does not apply

- Heritage Acts are relevant for archaeological research data in so far as that they regulate ownership of documentation (data) from archaeological excavations.
- Statistical Information Acts regulate the competencies of the statistics authorities in data gathering as well in access to data.
- Land Registry Acts (cadastral information) regulate the competencies of the national land registries and access to their data, with special provisions concerning personal data contained in their various databases.

Codes of Conduct/Ethical Issues

- Codes of Conduct, where these exist on a national level or in an institution, should be taken into account in DMPs. They contain the general principles of good academic teaching and research.
- Codes of Practice for the use of personal data in scientific and scholarly research are based on the Personal Data Protection Acts¹³ and prescribe how to handle personal data in research practice.
- Codes of Conduct for Medical Research regulate how researchers should handle medical personal data. They may be based on Medical Treatment Agreement Acts.

Digital Skills & Services

Research Infrastructure

Events

Webinar Video: GDPR & What It Means For Researchers

Heats (1)

Tob Gree * Participants (VI)

A crisetals June A Stea Develo B Ares

M. USERBurge T. · Presentes 10 E Superiories muca retemperatudo \$ Murtar Sarringan

EUROPEAN DATA PROTECTION SUPERVISOR

A Preliminary Opinion on data protection and scientific research

Jan 6, 2020

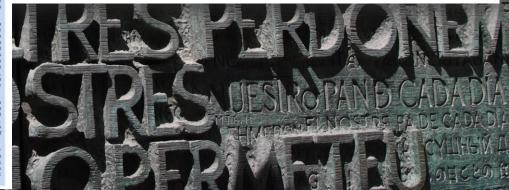
GDPR & What It Means For Researchers The Privacy Impact Assessment (PIA) Route Planner for Academic Research Inspired by Harry Beck's London Metro Map creating of prevented state in your research 0 technical and with the gentury activ **Executive Summary**

Scientific research depends on the exchange of ideas, knowledge and information. Where it involves the processing of data concerning people in the EU, scientific research is subject to the applicable rules including the General Data Protection Regulation and Regulation 1725/2018 for EU institutions. The rules contain a special regime affording a degree of flexibility for genuine research projects that operate within an ethical framework and aim to grow society's collective knowledge and wellbeing. How this special regime should operate in practice is under discussion. Some argue that the GDPR offers too much flexibility, others that the rules threaten vital research activity.

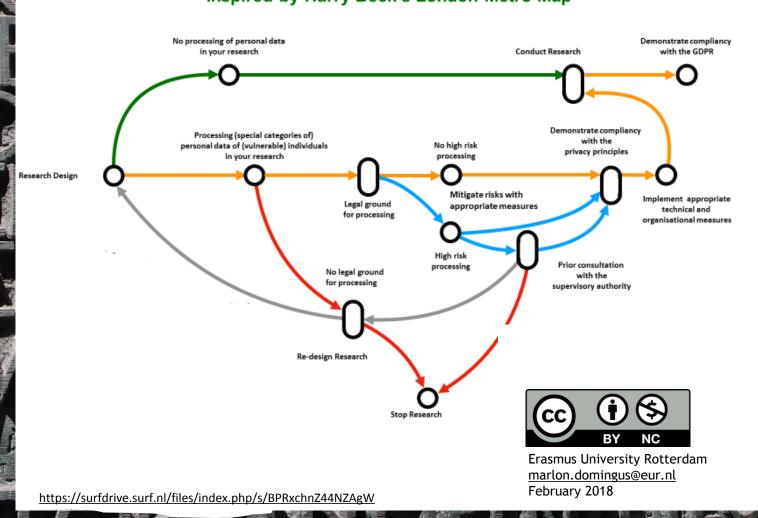
Digitisation has made the generation and dissemination of personal data easier and cheaper than ever and transformed how research is carried out. The boundary between private sector research and traditional academic research is blurrier than ever, and it is ever harder to distinguish research with generalisable benefits for society from that which primarily serves private interests. Corporate secrecy, particularly in the tech sector, which controls the most valuable data for understanding the impact of digitisation and specific phenomena like the information, is a major barrier to social science res

within an established framework of professional ethical standards. The interaction between this framework and the GDPR is being discussed within the European Data Protection Board.

The special regime applies the usual principles such as lawfulness, purpose limitation and data The special regime appries the usual principles such as lawrituness, purpose immanion and oata subject rights, but permits some derogations from controller obligations. This includes the presumption of compatibility of processing for scientific research purposes of data collected in commercial and other contexts, provided appropriate ascipatants are in place. This flexibility is afforded on the assumption that research occurring within a framework of ethical oversight amount on the assumption that research occurring within a framework or clinical oversigns serves, in principle, the public interest. The accountability principle therefore key, as it requires controllers to assess honestly and manage responsibly the risks inherent in their research projects. Such risks can be very high where, for example, processing sensitive data on health or political or religious views. Consent as a legal basis for processing must be freely-given, specific, informed and unambiguous. This differs conceptually and operationally from informed consent' of human participants in research. Such 'informed consent' may still serve as a safeguard in cases where consent is not appropriate as a data processing legal basis.


Scientific research serves a valuable function in a democratic society to hold powerful players Scientific research serves a variable function in a democratic society to food powerfur payers to account, and this hag grown in importance with the concentration of control over information flows in the hands of a few private global companies. Data protection obligations should not be insuppropriated as a means for powerful players to except transparency and accountability. Researchers operating within eitheal governance frameworks should therefore be able to access meessary API and other data, with a valid legal basis and subject to the principle of oportionality and appropriate safeguards.

mend intensifying dialogue between data protection authorities and ethical review boards for a common understanding of which activities qualify as genuine research, EU codes of conduct for scientific research, closer alignment between EU research framework mes and data protection standards, and the beginning of a debate on the circu in which access by researchers to data held by private companies can be based on public


Scholarly Communication

A Any Youge A Ante Chat (Everyone) Julio Utilik: yes: Gerret Mic Walten: Yes. Madeleire M. Good attrancon: YES 1 Ovistian Alber | Scholb-Architekt.de: /m.ahenn amused and astronded as well that the law makers even take genetics into eccuars. First impressed.

Minta Militir questions are have collected coded results of different laboratories at over the world in unfer to compare and standardise the technique used in those studies. Care we use this details por for the statistical analysis and publishing and do we result as detailore. creatives sign a document together with each laboratory for dataprotection and Eyes, how to do £1

The Privacy Impact Assessment (PIA) Route Planner for Academic Research Inspired by Harry Beck's London Metro Map

The Logic of a Privacy Impact Assessment (PIA) for Academic Research

Q1. Do you process (special categories of) personal data of (vulnerable) individuals in your research?

YES —Q2. What is the legal ground for this processing?

NO Proceed - no measures required for safeguardingpriv acy.

"Personal Data" (GDPR*, Article 4):

Any information relating to an identified or identifiable natural person: a name, an identification number, location data, an online identifier, one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or social identity of that natural person.

"Special Categories of Personal Data (Sensitive Data)" (GDPR, Article 9):

Data revealing racial or ethnic origin, political opinions, religious or philosophical beliefs, or trade union membership, the processing of genetic data, biometric data for the purpose of uniquely identifying a natural person, data concerning health or data concerning a natural person's sex life or sexual orientation.

Action

Records of processing activities (GDPR*, Article 30):

The university shall maintain a digital record of the processing activities in your research to demonstrate compliancy to the GDPR. This register contains:

- The name and contact details of the researcher,
- the research partners and service providers;
- 2. The purposes of the processing;
- 3. A description of the categories of data subjects and of the categories of personal data;
- 4. The categories of recipients to whom the personal data have been or will be disclosed.

Lawfulness of Processing (GDPR*, Article 6, 89):

- The individuals participating in your research have freely given their explicit consent for one or more specific purposes.
- Your research contributes to a legitimate interest, yet results in no high risks for the individuals participating in the research.
- Your research has a scientific, historical or statistical purpose, yet results in no high risks for the individuals participating in the research.

Action

Data protection by design and by default (GDPR*, Article 25):

Implement appropriate technical and organisational measures:

- Individual participating in your research (data subject). Is the participant well informed, aware of possible risks for her/him and aware of the purpose of the research?
- 2. Data. Is the data de-identified and encrypted?
- **3.** Access Management. How is access managed and controlled for the PI / team (expanded) / public?
- **4. Software / Platform.** Are the *Terms of Service* for used software / platform checked (where is the data and who has access and has which usage rights)?
- Devices. Are devices used safe? Encrypted drive, encrypted communication, strong password / two factor authentication.
- **6. Partners.** Are the research partners / service partners trusted and are appropriate legal agreements made, with regards to roles, rights and responsibilities?
- 7. Safe and secure collaboration. Is the ((cross border) communication to, in and from the) collaboration platform end to end encrypted, are roles and permissions defined and implemented, is logging and monitoring implemented?
- **8. Risk definition and mitigation**. Are risks defined and mitigated? Is a risk audit procedure started?

YES _______3. Is this processing a high risk processing?

NO

Stop research or redefine research.

Criteria for high risk processing (WP29 - DPIA Guideline**):

- 1. Evaluation or scoring
- 2. Automated-decision making with legal or similar significant effect

NO

Proceed -

measures

privacy.

required for

safe-guarding

- 3. Systematic monitoring
- 4. Sensitive data or data of a highly personal nature
- 5. Data processed on a large scale
- 6. Matching or combining datasets
- 7. Data concerning vulnerable data subjects
- Innovative use or applying new technological or organisational solutions
- When the processing itself prevents data subjects from exercising a right or using a service or a contract

Action

Prior consultation (GDPR*, Article 36):

 The Data Protection Officer shall, on behalf of the researcher, consult the supervisory authority, prior to the processing (the research) when the processing would result in a high risk in the absence of measures to mitigate the risk.

Action

Principles relating to processing of personal data (GDPR*, Article 5):

Demonstrate compliancy with the principles: lawfulness, fairness, transparency, purpose limitation, data minimisation, accuracy, storage limitation, integrity, confidentiality and accountability.

^{*} Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Online available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

^{**} Article 29 Data Protection Working Party: Guidelines on Data Protection Impact Assessment (DPIA) and determining whether processing is "likely to result in a high risk" for the purposes of Regulation 2016/679. Adopted on 4 April 2017. As last Revised and Adopted on 4 October 2017. Online available at: https://ec.europa.eu/newsroom/document.cfm?doc_id=47711

[anonimizzare]

AMNESIA

Anonymize your datasets

AMNESIA allows end users to anonymize sensitive data in order to share them with a broad audience. The service allows the user to guide the anonymization process and decide on a flexible trade-off between privacy guaranty and data utility. The service is offered through a web interface that allows users to explore the anonymized data visually. Moreover, the service detects duplicate anonymized files when they are uploaded to Zenodo.

data anonymization

research data management

Homepage Service

Usage

TECHNOLOGY READINESS LEVEL

8 - system complete and qualified

LIFECYCLE STATUS Beta

TARGET USERS

Research communities, Research Infrastructures, Universities, Research Centers, Hospitals. Any commercial provider that produces data and wants to

Service coverage

Support

Helpdesk → User manual → Feedback → Training information ->

http://catalogue.openaire.eu/service/openaire.amnesia

EXPLORE

PROVIDE

CONNEC

OPEN SCIENCE IN EUF

Contractual Info

Service level agreement -> Terms of use →

...FAIR SIGNIFICA [anche e soprattutto per le macchine]

FINDABLE

- IDENTIFICATIVI
 - METADATI

INTEROPERABLE

- STANDARDS
- ONTOLOGIE

SCIENTIFIC DATA

We'd like to understand how you use our websites in order to in

Open Access | Published FAIR guide, Nature, March 2016
The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier, [...] Barend Mons ™

ACCESSIBLE

- DOVE SONO CONSERVATI E A QUALI CONDIZIONI DI ACCESSO
 - NON SIGNIFICA «OPEN»
 - FORMATI APERTI

REUSABLE

- LICENZE D'USO
- DOCUMENTAZIONE
- LEGGIBILI DALLE MACCHINE

4. ...and what FAIR is not

Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud $\,$

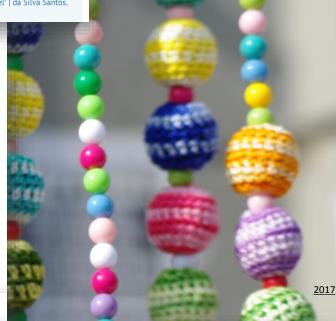
Article type: Research Article

Authors: Mons, Barenda; b; c; * | Neylon, Cameron^d | Velterop, Jan^e | Dumontier, Michel^f | da Silva Santos, Luiz Olavo Bonino^{b; g} | Wilkinson, Mark D.^h

FAIR is not a standard: The FAIR guiding principles are sometimes incorrectly referred to as a 'standard', even though the original publication explicitly states they are not [25]. The guiding principles allow many different approaches to rendering data and services Findable, Accessible, Interoperable, to serve the ultimate goal: the reuse of valuable research objects. Standards are prescriptive, while guidelines are permissive. We suggest that a variety of valuable standards can and should be developed, each of which is guided by the FAIR Principles. FAIR simply describes the qualities or behaviours required of data resources to

FAIR is not equal to RDF, Linked Data, or the Semantic Web The reference article in Scientific Data [25] emphasises the machine-actionability of data and metadata. This implies (in fact, requires) that resources that wish to maximally fulfil the FAIR guidelines must utilise a widely-accepted machine-readable framework for data and knowledge

achieve - possibly incrementally - their optimal discovery and scholarly reuse.


FAIR is not just about humans being able to find, access, reformat and finally reuse

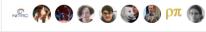
data: The official press release fc ¹¹ authors' position clearly: "The redata publication autonomously, Principles. Computers are now a recent surveys, the time reported dealing with discovering and reubeen pegged at 80% [19]. Were the deal with FAIR data and services, is today. The avoidance of time-v stewardship. To serve this potent and services should be actionable wherever possible.

3. What FAIR is...

FAIR refers to a set of principles, focused on ensuring that research objects are reusable, and actually will be reused, and so become as valuable as is possible. They deliberately do not specify technical requirements, but are a set of guiding principles that provide for a continuum of increasing reusability, via many different implementations. They describe characteristics and aspirations for systems and services to support the creation of valuable research outputs that could then be rigorously evaluated and extensively reused, with appropriate credit, to the benefit of both creator and user.

FAIR is not equal to Open: The 'A' in FAIR stands for 'Accessible under well defined conditions'. There may be legitimate reasons to shield data and services generated with public funding from public access. These include personal privacy, national security, and competitiveness. The FAIR principles, although inspired by Open Science, explicitly and

2017


Perché i dati aperti?

Traduci il Tweet

11:14 - 13 mar 2018

10 Retweet **10** Mi piace

https://twitter.com/wvanwezenbeek/status/973502457115537408

Sharing data: good for science, good for you

https:/

Oct. 2017

Digital Science Report

The State of Open Data 2017

f analyses and articles about open data, curated by Figshare

Foreword by Jean-Claude Burgelman

n data is like a

"Open data is like a renewable energy source: it can be reused without diminishing its original value, and reuse creates new value."

v.youtube.com/watch

&feature=youtu.be

People will contact me to ask about stuff

Christopher and Alex (C&A) say: "This is usually objection of people who feel overworked and the [data sharing] isn't part of their job ... " I would a learning from each other - if a researcher is opp datasets, collaborating with others, and genera they should be outed by their community as a p COMUNICAZIONE **SCIENTIFICA= GRANDE** CONVERSAZIONE

the

chers to

actually

bet

Freedom

People will misinterpret the data

C&A suggest this: "Document how it should be interpreted. Be prepared to help and

correct such people; those that mis help." From the UK Data Archive: "P contextual information for your res correctly use and understand your of

NELLA «R» DI **FAIR AVETE** It's worth mentioning, however, a se **DOCUMENTATO**

be useful to counter willful misrepre of Information legislation), as one c refute the wrong interpretation."

My data is not very interesting

C&A: "Let others judge how intere people that care about them." I'd dataset has value to future research "climate change" was a research t documenting and understanding

EHM... ALLORA PERCHÉ USA **FONDI PUBBLICI?**

IMPOSSIBILE, SE

http://carlystrasser.net/closed-data-excuses-excuses/

Closed Data... Excuses, Excuses

I might want to use it in a research paper

Anyone who's discussed data sharing with a researcher is familiar with this excuse. The operative word here is might. How many papers have we all considered writing,

only to have them shift to the back burn real concern.

C&A suggest the embargo route: "One embargo; require people to archive the public after X months. You could even things that are no longer cared about b eventually everything can become ope

EMBARGO PERFETTAMENTE COMPATIBILE **CON FAIR**

their datasets, but I would caution to have any restrictions default to sharing. That is, after X months the data are automatically made open by the repository.

I would also add that, as the original collector of the data, you are at a huge advantage compared to others that might want to use your dataset. You have knowledge about your system, the conditions during collection, the nuances of your methods, et cetera that could never be fully described in the best metadata.

I'm not sure I own the data

My data is too complicated.

C&A: "Don't be too smug. If it turns out it's not that compl professional [standing]," I would add that if it's too compl complicated to reproduce, which means it's arguably not can be solved by more documentation.

IMPOSSIBILE, SE **NELLA «R» DI** FAIR AVETE **DOCUMENTATO**

My data is embarrassingly bad

C&A: "Many eyes will help you imp accept your data for what it is." I as making the sausage. We know it's Plus it helps you strive will be at m collection phase.

It's not a priority and I'm busy

MA COME SI FA A **FARE RICERCA CON DATI** «BRUTTI»???

people will ck end of accept that.

ly has wner

SEMPRE MAGGIOR NUMERO DI FINANZIATORI E DI RIVISTE LO CHIEDE... STA DIVENTANDO UNA PRIORITÀ

CARLY STRASSER

Previous Research

