001028208 001__ 1028208
001028208 005__ 20250204113906.0
001028208 0247_ $$2doi$$a10.1212/WNL.0000000000209583
001028208 0247_ $$2ISSN$$a0028-3878
001028208 0247_ $$2ISSN$$a1526-632X
001028208 0247_ $$2pmid$$a38857458
001028208 0247_ $$2WOS$$aWOS:001329378500033
001028208 037__ $$aFZJ-2024-04403
001028208 082__ $$a610
001028208 1001_ $$00000-0002-9980-4978$$aGramespacher, Hannes$$b0$$eFirst author
001028208 245__ $$aAnalysis of Cerebral CT Based on Supervised Machine Learning as a Predictor of Outcome After Out-of-Hospital Cardiac Arrest
001028208 260__ $$a[Erscheinungsort nicht ermittelbar]$$bOvid$$c2024
001028208 3367_ $$2DRIVER$$aarticle
001028208 3367_ $$2DataCite$$aOutput Types/Journal article
001028208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719489142_24926
001028208 3367_ $$2BibTeX$$aARTICLE
001028208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028208 3367_ $$00$$2EndNote$$aJournal Article
001028208 500__ $$aH. Gramespacher was supported by the Cologne Clinician Scientist Program (CCSP)/Faculty of Medicine/University of Cologne. Funded by the German Research Foundation (DFG, FI 773/15-1).
001028208 520__ $$aAbstractBackground and ObjectivesIn light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (CCT) analysis allows prognostication after out-of-hospital cardiac arrest.MethodsIn this monocentric, retrospective cohort study, a supervised machine learning classifier based on an elastic net regularized logistic regression model for gray matter alterations on nonenhanced CCT obtained after cardiac arrest was trained using 10-fold cross-validation and tested on a hold-out sample (random split 75%/25%) for outcome prediction. Following the literature, a favorable outcome was defined as a cerebral performance category of 1–2 and a poor outcome of 3–5. The diagnostic accuracy was compared with established and guideline-recommended prognostic measures within the sample, that is, gray matter-white matter ratio (GWR), neuron-specific enolase (NSE), and neurofilament light chain (NfL) in serum.ResultsOf 279 adult patients, 132 who underwent CCT within 14 days of cardiac arrest with good imaging quality were identified. Our approach discriminated between favorable and poor outcomes with an area under the curve (AUC) of 0.73 (95% CI 0.59–0.82). Thus, the prognostic power outperformed the GWR (AUC 0.66, 95% CI 0.56–0.76). The biomarkers NfL, measured at days 1 and 2, and NSE, measured at day 2, exceeded the reliability of the imaging markers derived from CT (AUC NfL day 1: 0.87, 95% CI 0.75–0.99; AUC NfL day 2: 0.90, 95% CI 0.79–1.00; AUC NSE day: 2 0.78, 95% CI 0.62–0.94).DiscussionOur data show that machine learning–assisted gray matter analysis of CCT images offers prognostic information after out-of-hospital cardiac arrest. Thus, CCT gray matter analysis could become a reliable and time-independent addition to the standard workup with serum biomarkers sampled at predefined time points. Prospective studies are warranted to replicate these findings.
001028208 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001028208 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028208 7001_ $$0P:(DE-HGF)0$$aSchmieschek, Maximilian H. T.$$b1
001028208 7001_ $$00000-0002-3510-9255$$aWarnke, Clemens$$b2
001028208 7001_ $$0P:(DE-HGF)0$$aAdler, Christoph$$b3
001028208 7001_ $$00000-0003-2179-3655$$aBittner, Stefan$$b4
001028208 7001_ $$0P:(DE-Juel1)162382$$aDronse, Julian$$b5
001028208 7001_ $$aRichter, Nils$$b6
001028208 7001_ $$0P:(DE-HGF)0$$aZaeske, Charlotte$$b7
001028208 7001_ $$0P:(DE-HGF)0$$aGietzen, Carsten$$b8
001028208 7001_ $$0P:(DE-HGF)0$$aSchlamann, Marc$$b9
001028208 7001_ $$0P:(DE-HGF)0$$aBaldus, Stephan$$b10
001028208 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b11$$ufzj
001028208 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b12$$eCorresponding author
001028208 773__ $$0PERI:(DE-600)1491874-2$$a10.1212/WNL.0000000000209583$$gVol. 103, no. 1, p. e209583$$n1$$pe209583$$tNeurology$$v103$$x0028-3878$$y2024
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/PDF%20RESTRICTED%20.pdf$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/POST%20PRINT.pdf$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/PDF%20RESTRICTED%20.gif?subformat=icon$$xicon$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/PDF%20RESTRICTED%20.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/PDF%20RESTRICTED%20.jpg?subformat=icon-180$$xicon-180$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/PDF%20RESTRICTED%20.jpg?subformat=icon-640$$xicon-640$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/POST%20PRINT.gif?subformat=icon$$xicon$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/POST%20PRINT.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/POST%20PRINT.jpg?subformat=icon-180$$xicon-180$$yRestricted
001028208 8564_ $$uhttps://juser.fz-juelich.de/record/1028208/files/POST%20PRINT.jpg?subformat=icon-640$$xicon-640$$yRestricted
001028208 909CO $$ooai:juser.fz-juelich.de:1028208$$pVDB
001028208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b11$$kFZJ
001028208 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001028208 9141_ $$y2024
001028208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001028208 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001028208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001028208 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2025-01-02$$wger
001028208 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROLOGY : 2022$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001028208 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROLOGY : 2022$$d2025-01-02
001028208 920__ $$lyes
001028208 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001028208 980__ $$ajournal
001028208 980__ $$aVDB
001028208 980__ $$aI:(DE-Juel1)INM-3-20090406
001028208 980__ $$aUNRESTRICTED