001028213 001__ 1028213
001028213 005__ 20250204113906.0
001028213 0247_ $$2doi$$a10.1021/acs.jpclett.4c00693
001028213 0247_ $$2pmid$$a38749015
001028213 0247_ $$2WOS$$aWOS:001226083900001
001028213 037__ $$aFZJ-2024-04407
001028213 082__ $$a530
001028213 1001_ $$00009-0006-6743-2344$$aLamm, Gerrit H. U.$$b0
001028213 245__ $$aCalcium-Sensitive Microbial Rhodopsin VirChR1: A Femtosecond to Second Photocycle Study
001028213 260__ $$aWashington, DC$$bACS$$c2024
001028213 3367_ $$2DRIVER$$aarticle
001028213 3367_ $$2DataCite$$aOutput Types/Journal article
001028213 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721624587_29528
001028213 3367_ $$2BibTeX$$aARTICLE
001028213 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028213 3367_ $$00$$2EndNote$$aJournal Article
001028213 520__ $$aViral rhodopsins are light-gated cation channels representing a novel class of microbial rhodopsins. For viral rhodopsin 1 subfamily members VirChR1 and OLPVR1, channel activity is abolished above a certain calcium concentration. Here we present a calcium-dependent spectroscopic analysis of VirChR1 on the femtosecond to second time scale. Unlike channelrhodopsin-2, VirChR1 possesses two intermediate states P1 and P2 on the ultrafast time scale, similar to J and K in ion-pumping rhodopsins. Subsequently, we observe multifaceted photocycle kinetics with up to seven intermediate states. Calcium predominantly affects the last photocycle steps, including the appearance of additional intermediates P6Ca and P7 representing the blocked channel. Furthermore, the photocycle of the counterion variant D80N is drastically altered, yielding intermediates with different spectra and kinetics compared to those of the wt. These findings demonstrate the central role of the counterion within the defined reaction sequence of microbial rhodopsins that ultimately defines the protein function.
001028213 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001028213 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028213 7001_ $$0P:(DE-Juel1)176570$$aZabelskii, Dmitrii$$b1
001028213 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b2
001028213 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b3$$ufzj
001028213 7001_ $$00000-0002-8496-8240$$aWachtveitl, Josef$$b4$$eCorresponding author
001028213 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.4c00693$$gVol. 15, no. 20, p. 5510 - 5516$$n20$$p5510 - 5516$$tThe journal of physical chemistry letters$$v15$$x1948-7185$$y2024
001028213 8564_ $$uhttps://juser.fz-juelich.de/record/1028213/files/lamm-et-al-2024-calcium-sensitive-microbial-rhodopsin-virchr1-a-femtosecond-to-second-photocycle-study.pdf
001028213 8564_ $$uhttps://juser.fz-juelich.de/record/1028213/files/lamm-et-al-2024-calcium-sensitive-microbial-rhodopsin-virchr1-a-femtosecond-to-second-photocycle-study.gif?subformat=icon$$xicon
001028213 8564_ $$uhttps://juser.fz-juelich.de/record/1028213/files/lamm-et-al-2024-calcium-sensitive-microbial-rhodopsin-virchr1-a-femtosecond-to-second-photocycle-study.jpg?subformat=icon-1440$$xicon-1440
001028213 8564_ $$uhttps://juser.fz-juelich.de/record/1028213/files/lamm-et-al-2024-calcium-sensitive-microbial-rhodopsin-virchr1-a-femtosecond-to-second-photocycle-study.jpg?subformat=icon-180$$xicon-180
001028213 8564_ $$uhttps://juser.fz-juelich.de/record/1028213/files/lamm-et-al-2024-calcium-sensitive-microbial-rhodopsin-virchr1-a-femtosecond-to-second-photocycle-study.jpg?subformat=icon-640$$xicon-640
001028213 909CO $$ooai:juser.fz-juelich.de:1028213$$pVDB
001028213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich$$b2$$kFZJ
001028213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b3$$kFZJ
001028213 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001028213 9141_ $$y2024
001028213 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001028213 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001028213 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001028213 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001028213 920__ $$lyes
001028213 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001028213 980__ $$ajournal
001028213 980__ $$aVDB
001028213 980__ $$aI:(DE-Juel1)IBI-7-20200312
001028213 980__ $$aUNRESTRICTED