001     1028395
005     20240722202103.0
020 _ _ |a 978-3-95806-762-2
024 7 _ |a 10.34734/FZJ-2024-04576
|2 datacite_doi
037 _ _ |a FZJ-2024-04576
100 1 _ |a Schwiers, Alexander
|0 P:(DE-Juel1)180786
|b 0
|u fzj
245 _ _ |a Investigation and implementation of improved and degradation-tolerant fuel electrodes for solid oxide cells
|f - 29.04.2024
260 _ _ |a Jülich
|c 2024
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a VI, 163, XIII
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1721624468_28942
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 634
502 _ _ |a Dissertation, RWTH Aachen University, 2024
|c RWTH Aachen University
|b Dissertation
|d 2024
520 _ _ |a Ni- yttria-stabilized zirconia is commonly used as a fuel electrode cermet in solid oxide cells due to its compelling combination of conductivity, stability, and material compatibility. However, it faces significant degradation when exposed to hydrocarbon-rich fuels, such as tar-containing biogas. Carbon adsorption poisons the Ni component, leading to a decrease in catalytic activity, while the formation of carbon fibers ultimately results in nickel dusting. To address the issue of fuel electrode degradation without the need for fuel pre-treatment, this study investigates two alternative fuel electrode materials. The first material is gadolinia-doped ceria (Gd0.1Ce0.9O2-δ) as a replacement for yttria-stabilized zirconia. Gadolinia-doped ceria possesses mixed electronic and ionic conductivity, allowing it to maintain catalytic activity even when Ni is poisoned. Moreover, it exhibits oxygen storage capacity, potentially aiding in carbon removal. ...
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028395/files/Energie_Umwelt_634.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028395/files/Energie_Umwelt_634.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028395/files/Energie_Umwelt_634.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028395/files/Energie_Umwelt_634.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028395/files/Energie_Umwelt_634.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028395
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180786
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21