| Hauptseite > Publikationsdatenbank > Artificial Intelligence Framework for Video Analytics: Detecting Pushing in Crowds > print |
| 001 | 1028429 | ||
| 005 | 20240716202035.0 | ||
| 020 | _ | _ | |a 978-3-95806-763-9 |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-04610 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2024-04610 |
| 100 | 1 | _ | |a Alia, Ahmed |0 P:(DE-Juel1)185971 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Artificial Intelligence Framework for Video Analytics: Detecting Pushing in Crowds |f - 2024 |
| 260 | _ | _ | |a Jülich |c 2024 |b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag |
| 300 | _ | _ | |a xviii, 151 |
| 336 | 7 | _ | |a Output Types/Dissertation |2 DataCite |
| 336 | 7 | _ | |a Book |0 PUB:(DE-HGF)3 |2 PUB:(DE-HGF) |m book |
| 336 | 7 | _ | |a DISSERTATION |2 ORCID |
| 336 | 7 | _ | |a PHDTHESIS |2 BibTeX |
| 336 | 7 | _ | |a Thesis |0 2 |2 EndNote |
| 336 | 7 | _ | |a Dissertation / PhD Thesis |b phd |m phd |0 PUB:(DE-HGF)11 |s 1721117563_10766 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a doctoralThesis |2 DRIVER |
| 490 | 0 | _ | |a Schriften des Forschungszentrums Jülich IAS Series |v 61 |
| 502 | _ | _ | |a Dissertation, Univ. Wuppertal, 2024 |c Univ. Wuppertal |b Dissertation |d 2024 |
| 520 | _ | _ | |a In the modern era, data has become more complex, posing additional challenges to conventional data analysis methods. This is where Artificial Intelligence comes into play, specifically Deep Learning algorithms. These algorithms can analyze such data automatically, quickly, and accurately. Moreover, they can explore complex relationships between variables and identify non-linear patterns humans may not perceive. Leveraging this potential, Deep Learning has recently become pivotal in analyzing complex data, such as video data, arising from human crowds to enhance safety. Despite considerable advancements, some challenging problems in crowd dynamics still need to be solved efficiently and automatically. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1028429 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185971 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
| 980 | _ | _ | |a phd |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a book |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|