001     1028429
005     20240716202035.0
020 _ _ |a 978-3-95806-763-9
024 7 _ |a 10.34734/FZJ-2024-04610
|2 datacite_doi
037 _ _ |a FZJ-2024-04610
100 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Artificial Intelligence Framework for Video Analytics: Detecting Pushing in Crowds
|f - 2024
260 _ _ |a Jülich
|c 2024
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a xviii, 151
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1721117563_10766
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich IAS Series
|v 61
502 _ _ |a Dissertation, Univ. Wuppertal, 2024
|c Univ. Wuppertal
|b Dissertation
|d 2024
520 _ _ |a In the modern era, data has become more complex, posing additional challenges to conventional data analysis methods. This is where Artificial Intelligence comes into play, specifically Deep Learning algorithms. These algorithms can analyze such data automatically, quickly, and accurately. Moreover, they can explore complex relationships between variables and identify non-linear patterns humans may not perceive. Leveraging this potential, Deep Learning has recently become pivotal in analyzing complex data, such as video data, arising from human crowds to enhance safety. Despite considerable advancements, some challenging problems in crowd dynamics still need to be solved efficiently and automatically.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028429/files/IAS_Series_61.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028429
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185971
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21