001     1028431
005     20240724202017.0
020 _ _ |a 978-3-95806-766-0
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-04612
024 7 _ |2 URN
|a urn:nbn:de:0001-20240724091805126-5353403-6
037 _ _ |a FZJ-2024-04612
100 1 _ |0 P:(DE-Juel1)174294
|a Haags, Anja
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Advances in Photoemission Orbital Tomography
|f - 2024-05-14
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2024
300 _ _ |a ix, 254
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1721132442_10765
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Information / Information
|v 104
502 _ _ |a Dissertation, RWTH Aachen University, 2024
|b Dissertation
|c RWTH Aachen University
|d 2024
520 _ _ |a Photoemission orbital tomography (POT) is an established technique to investigate the electronic properties of organic adsorbates on surfaces. In POT, a combined experimental and theoretical approach, angle-resolved photoelectron spectroscopy data are measured in a large angular range at a constant kinetic energy and compared to calculated wave functions of organic molecules. To simulate the photoemission process, the final state of the photoelectrons is approximated by a plane wave (PW). Then, the experimentally-obtained photoemission intensity distribution can be correlated directly to theoretical density of states to identify individual orbitals. Due to the used PW approximation (PWA), POT is commonly restricted to π orbitals of large, planar molecules, and a particular experimental geometry. Yet, some reports in literature suggest that POT is not fixed to these conditions. In this work, we verify the limits of POT and thus extend its potential.
536 _ _ |0 G:(DE-HGF)POF4-5213
|a 5213 - Quantum Nanoscience (POF4-521)
|c POF4-521
|f POF IV
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/1028431/files/Information_104.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028431/files/Information_104.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028431/files/Information_104.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028431/files/Information_104.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028431/files/Information_104.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1028431
|p openaire
|p open_access
|p urn
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174294
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-521
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5213
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Materials
|x 0
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21