001     1028433
005     20250204113907.0
024 7 _ |a 10.1038/s41612-024-00633-1
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04614
|2 datacite_doi
024 7 _ |a WOS:001221690600002
|2 WOS
037 _ _ |a FZJ-2024-04614
082 _ _ |a 530
100 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 0
|e Corresponding author
245 _ _ |a Long range transport of South and East Asian anthropogenic aerosols counteracting Arctic warming
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721128829_10765
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The large-scale convection during the Asian summer monsoon plays an important role in the rapidtransport of boundary layer aerosols into the Asian summer monsoon anticyclone. Here, using thestate-of-the-art ECHAM6–HAMMOZ aerosol-chemistry-climate model, we show that these aerosolsare further transported to the Arctic along isentropic surfaces by the Brewer-Dobson-Circulation(BDC) during the monsoon season. Our model simulations show that East and South Asiananthropogenic emissions contribute significantly to the aerosol transported to the Arctic, whichcauses a higher negative net aerosol radiative forcing at the surface (dimming) of −0.09 ± 0.02 Wm −2and −0.07 ± 0.02 Wm −2 , respectively. Over the Arctic, the East Asian anthropogenic aerosols thatinclude large amounts of sulfate cause a seasonal mean net radiative forcing at the top of theatmosphere (TOA) of −0.003 ± 0.001Wm −2 and a surface cooling of −0.56 K while the black carbondominated aerosol from South Asia shows a positive TOA forcing of +0.004 ± 0.001Wm −2 with an onlyminor surface cooling of −0.043 K. Overall, the long-range transport of South Asian aerosols results ina notably warming throughout the atmospheric column but minimal temperature response at the Arcticsurface. Conversely, East Asian aerosols cool the troposphere and heat the lower stratosphere in theArctic. The Asian aerosol thus plays an ambivalent role, with the East Asian sources in particular havingthe potential to counteract the rapid rise in Arctic temperatures and the associated melting of snowand ice.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sonbawne, Sunil M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laakso, Anton
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 3
|u fzj
700 1 _ |a Rap, Alexandru
|0 0000-0002-2319-6769
|b 4
700 1 _ |a Heinold, Bernd
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sabin, T. P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 7
773 _ _ |a 10.1038/s41612-024-00633-1
|g Vol. 7, no. 1, p. 101
|0 PERI:(DE-600)2925628-8
|n 1
|p 101
|t npj climate and atmospheric science
|v 7
|y 2024
|x 2397-3722
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028433/files/s41612-024-00633-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028433/files/s41612-024-00633-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028433/files/s41612-024-00633-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028433/files/s41612-024-00633-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028433/files/s41612-024-00633-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028433
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129138
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ CLIM ATMOS SCI : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:42:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:42:55Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:42:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ CLIM ATMOS SCI : 2022
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21