001     1028488
005     20250213220527.0
024 7 _ |a 10.1038/s41598-024-65712-y
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04640
|2 datacite_doi
024 7 _ |a 38951158
|2 pmid
024 7 _ |a WOS:001260844500034
|2 WOS
037 _ _ |a FZJ-2024-04640
082 _ _ |a 600
100 1 _ |a Robledo, José Ignacio
|0 P:(DE-Juel1)195622
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Learning from virtual experiments to assist users of Small Angle Neutron Scattering in model selection
260 _ _ |a [London]
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739449080_4289
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we combine the advantages of virtual Small Angle Neutron Scattering (SANS) experiments carried out by Monte Carlo simulations with the recent advances in computer vision to generate a tool that can assist SANS users in small angle scattering model selection. We generate a dataset of almost 260.000 SANS virtual experiments of the SANS beamline KWS-1 at FRM-II, Germany, intended for Machine Learning purposes. Then, we train a recommendation system based on an ensemble of Convolutional Neural Networks to predict the SANS model from the two-dimensional scattering pattern measured at the position-sensitive detector of the beamline. The results show that the CNNs can learn the model prediction task, and that this recommendation system has a high accuracy in the classification task on 46 different SANS models. We also test the network with real data and explore the outcome. Finally, we discuss the reach of counting with the set of virtual experimental data presented here, and of such a recommendation system in the SANS user data analysis procedure.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 1
|u fzj
700 1 _ |a Willendrup, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lieutenant, Klaus
|0 P:(DE-Juel1)178839
|b 3
|u fzj
773 _ _ |a 10.1038/s41598-024-65712-y
|g Vol. 14, no. 1, p. 14996
|0 PERI:(DE-600)2615211-3
|n 1
|p 14996
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si2.txt
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1028488/files/205si1.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1028488
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195622
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130646
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178839
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21