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Abstract: While Ising criticality in classical liquids has been firmly established both theoretically and
experimentally, much less is known about criticality in liquids in which the growth of the correlation
length is frustrated by finite-size effects. A theoretical approach for dealing with this issue is the
random-field Ising model (RFIM). While experimental critical-exponent values have been reported
for magnetic samples (here, we consider γ, ν and η), little experimental information is available for
critical fluctuations in corresponding liquid systems. In this paper, we present a study on a binary
liquid consisting of 3-methyl pyridine and heavy water in a very light-weight porous gel. We find
that the experimental results are in agreement with the theoretical predictions from the RFIM.

Keywords: critical fluctuations; critical exponents; SANS; confinement; porous aerogel; random-field
Ising model

1. Introduction

Complex fluids have a wide range of applications in industry. Some examples are
micro- or nano-reactors for chemistry [1], controlled drug release [2], enhanced oil recov-
ery [3], electrolytes in batteries [4] and fuel or electrolyzer cells [5], many of which deal
with multiphase coexistence and face issues of miscibility. In microemulsions with two
phases, the production of nanoparticles can be controlled in terms of size and shape [1].
For pharmaceutical applications, the formation of small compartments that crystallize may
be of major importance for encapsulation and controlled release [2]. In surfactant flooding,
the surfactant fluid is purposely formulated with respect to interfacial tension, wettability
alteration, foam generation and emulsification [3]. Often, the viscosity of the micellar
suspension is extremely important too. Polar and less polar (e.g., ethylene carbonate) sub-
stances are also important as electrolytes for batteries [4]. They support higher voltages in
applications where the electrolyte passivates the aggressive electrodes through the cathode
electrolyte interphase and/or the solid electrolyte interphase. Also, hydrophobic fluori-
nated organic molecules can support this process while being less flammable. However,
they are not the best environmental solution. Fuel and electrolyzer cells frequently use
proton-conducting liquids—often with a polymeric scaffold for mechanical stability [5].
The electrolyte can be phosphoric acid, potassium hydroxide or other alkalines with smaller
amounts of water. All these examples deal with hydrophilic/hydrophobic or amphiphilic
mixtures and introduce a certain kind of randomness to the structure.

One way of obtaining some insight into this topic may be by studying the critical
behavior of binary liquids in porous media. In the absence of surface effects, binary
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liquids display 3-dimensional (3D, d = 3) Ising criticality [6–11]. However, for binary
liquids in porous media, there are possible changes in their critical behavior [12–14]. While
supercritical CO2 is not a binary system, in this case, the correlation length in CO2 near
the critical point has been shown to be limited by the pore size of an aerogel [15]. Binary
mixtures of 2,6-lutidine and D2O have been studied with small-angle neutron-scattering
(SANS) experiments [16,17]. Here, the emphasis was on the theoretical understanding
of the scattering functions themselves. The correlation length could grow rather large
compared to the pore size, although it is also limited by the pores. A conclusion on the
nature of the observed critical behavior has not been obtained. A textbook dedicated to
criticality in systems in porous media has been provided by Melnichenko [18].

Concerning critical exponents, the random-field Ising model (RFIM) is an important
model that may describe large correlation lengths compared to smaller structures of ran-
domness [19]. Critical exponents have been listed from several theoretical approaches [20–24].
Most experimental values have been reported for magnetic samples, primarily dilute anti-
ferromagnets [25]. However, experimental evidence for the presence of RFIM criticality in
liquid systems is largely absent. One measurement of one exponent (β) has been reported
for N2 in an aerogel [26].

In this paper, we report a detailed experimental study on the critical behavior of a
binary liquid in a highly porous aerogel. The liquids were 3-methyl pyridine (3MP) and
heavy water (D2O). In the literature, this system has been confirmed as an ideal 3D Ising
system without aerogel [27,28]. But by adding antagonistic salt or surfactants, the third
component locally imposes a lamellar order (also called charge density waves) that confines
the two main components to two dimensions. More details about this different topic can be
found in the literature [27–29].

We first summarize existing theoretical concepts. Then, we describe SANS curves
using the small-angle scattering model and define the necessary parameters. Finally, we
shall discuss the critical exponents deduced from the analysis of the experimental data and
shall try to reconcile them with the literature and the available theoretical concepts.

2. Theory

In this section, we summarize the ideas of the best developed scattering theories
that have successfully been applied to experimental data [15–17]. From this, we further
discuss the criticality of selected parameters that do depend on temperature. The scattering
function applied in analyzing our SANS measurements is similar to the expression of
Sinha [16]:

dΣ
dΩ

(Q) =
IOZ,mod(0)

(1 + ξ2Q2)1−η/2 +
IRF(0)

(1 + ξ2Q2)2 · SG(Q) (1)

The macroscopic cross section of the SANS experiment dΣ/dΩ is normalized to
absolute units and depends isotropically on the scattering wave number Q. The first term
is based on the classical Ornstein–Zernike expression [30,31], but modified by Fisher [30] in
order to obtain the large-Q scaling corrected by the critical correlation function exponent
η. This modified Ornstein–Zernike expression contains an amplitude IOZ,mod(0) and the
correlation length ξ for the critical fluid. The next term is based on the response function
and involves the square of the ideal Lorentzian of the Ornstein–Zernike expression. Again,
we have an amplitude IRF(0). The original theory [16] contains an additional constant.
However, we estimate this constant to be approx. 2% or less compared to the square
root of the amplitude IRF(0). Hence, we neglected this additional term as was done by
Melnichenko [15]. The last term in Equation (1) contains the structure factor SG of the
aerogel. It was introduced by Sinha and Melnichenko [15,16]:

SG(Q) =
sin[(Df − 1) arctan(ξGQ)]

(Df − 1)ξGQ · (1 + ξ2
GQ2)(Df−1)/2

(2)
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Here, we have the correlation length of the aerogel ξG and its fractal dimension Df.
Both terms are material parameters and do not depend on temperature. The structure factor
SG is normalized such that with a limit of small Q, it approaches unity. The whole theory is
applicable when the sizes ξG > RP > ξ are ordered. As we will see below, ξG = 9.8 nm,
and the pore size RP = 3 to 3.5 nm. The correlation length ξ of the liquid is lower at the
lowest temperature, but can exceed RP at higher temperatures (see discussion of ξ). As we
will see, in the latter case, the full theory cannot be applied over the full Q-range anymore.

Near the critical point, the temperature dependence of the amplitude IOZ,mod(0) of
the Ornstein–Zernike term and of the correlation length in Equation (1) are represented by
power laws of the form

IOZ,mod(0) = I0 · τ−γ (3)

and
ξ = ξ0 · τ−ν (4)

Here, τ = |1 − T/Tc| in terms of the temperature T and the critical temperature Tc.
For the amplitude of the response function, we assume a similar scaling as for the Ornstein–
Zernike term. So far, this is not strictly supported by theories, but in our study, it seems to
be confirmed empirically (see discussion of amplitudes I0 and IRF,0):

IRF(0) = IRF,0 · τ−γRF (5)

Values for the critical exponents γ, ν and η are presented in Table 1. We quote values
for the ideal 3-dimensional Ising behavior and include the ones for the random-field Ising
model. For the latter, we summarize theoretical and experimental values (or ranges).
While there exists agreement for the ideal Ising exponents with minor uncertainties, the
theories for the RFIM are distributed depending on detailed assumptions of the model.
The experimental data in the literature have only been obtained for magnetic samples. To
our knowledge, we have, for the first time, obtained similar exponent values for a liquid
system.

Table 1. Summary of the critical exponents in three dimensions. The first column summarizes
the theoretical values of the ideal Ising criticality [10,11]. The second column collects a spread of
theoretical values for the RFIM [20–24]. The third column summarizes experimental exponent values
found for magnetic systems [25].

Ideal Theory Experiment This

Exponent Ising RFIM RFIM Study

γ 1.238 ± 0.012 1.5–2.0 1.75 ( ± 0.25) 1.48 ± 0.15

ν 0.629 ± 0.003 1.0–1.4 1.1 ( ± 0.2) 1.24 ± 0.05

η 0.032 ± 0.013 0.25–0.52 0.16–0.5 (–) 0.69 ± 0.01

The whole set of experimental parameters that were experimentally obtained from
SANS experiments are summarized in Table A1 in Appendix A.

3. Materials and Experiments

3-methyl-pyridine (3MP, 99.5% purity) was purchased from Sigma Aldrich, Taufkirchen,
and used as received. Heavy water (D2O, 99.8% purity) was purchased from Armar Chem-
icals, Döttingen, and used as received. The aerogel was purchased from Stadur-Süd,
Pliezhausen, with a density of 0.07 g/cm3. The flakes were filled in with a spatula to a banjo
Hellma cell (1 mm thickness) and gently compressed before the mixed fluid was added. In-
formation about the SANS experimental facility used in this work was already presented in
a previous publication [29]. The 3MP/D2O mixtures were mixed by volume (35%vol 3MP).
The mixture displays a lower critical solution temperature [29] of 36.8 ◦C as a binary system
and of 44 ◦C in the aerogel. This indicates that the liquids are in a one-phase state. The
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scattering length densities of D2O/3MP/aerogel are (6.36/1.43/(3.48 ± 0.1)) × 10−4 nm−2.
This finding states that the liquid–liquid contrast is approx. 50 times stronger than the
liquid–solid contrast.

4. Analysis of the Experimental Data

The SANS experiments were conducted with a set of different temperatures ranging
from 20 ◦C to 36 ◦C. A selection of three different data sets are depicted in Figure 1 in a log–
log scale. We can see monotonically decaying intensities toward higher Q. For the lowest
temperature, we applied the full theory of Equation (1). The two different contributions in
Equation (1) are represented by separate curves. We have the modified Ornstein–Zernike
expression dominating for Q > 0.55 nm−1. At the highest Q, the power law is connected to
the exponent η = 0.7± 0.1. At lower Q, the fractal structure of the aerogel SG is dominating.
The square of the Lorentzian (or Ornstein–Zernike) has two influences: (a) it provides a
cut-off for the glass structure and (b) it modifies the Gunier scattering at the lowest Q,
i.e., the initial decay.

Figure 1. The macroscopic cross section as a function of the scattering wave number for different
temperatures. The lines (green and red) indicate the separated contributions of the modified Ornstein–
Zernike expression and the response function (first and second term in Equation (1). The statistical
errors are of the size of the symbols or smaller.

When we look at the curves for higher temperatures, we see that the power law at
the highest Q does not change considerably. This means that the exact amplitude of this
term may not be well determined by model fitting. Second, the cut-off of the fractal glass
structure does not change, while the low-Q decay does change. In theory (Equation (1)),
both features would be affected by the correlation length ξ simultaneously. So the original
theory contradicts the experimental findings, and we have to apply a different approach
for the description of the data.

First, we applied the original theory to the lowest temperature and assumed that
the cut-off and low-Q decrease are well coupled. We obtain the correct amplitude and
correlation length of the modified Ornstein–Zernike term, and simultaneously also fit
the fractal glass structure with its correlation length ξG = (9.8 ± 0.2)nm and dimension
Df = 2.44 ± 0.03. The glass structure agrees very well with the study of Melnichenko [15],
and so we assume that the given pore radius RP = 3 to 3.5 nm also applies to our study.
The coincidence RP ≈ Q−1

cutoff should be noted. For the other curves, we only considered
the lower Q-end (Q < 0.21 nm−1) and fitted the fluid correlation length ξ, while the
glass structure factor (Equation (2)) was kept constant. The overall amplitude IRF(0) was
obtained from the fit as well.

We then focused separately on the high-Q end of the SANS curves (Q > 0.85 nm−1)
and fitted the Ornstein–Zernike expression (Equation (1)) only with a free exponent η for all
temperatures. The collected values are depicted in Figure 2. The temperature dependence
is negligible within the given errors. So, we obtain a constant η = 0.69 ± 0.01, which is
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much more precise than from fitting of the full theory (Equation (1)) over the full Q-range
for only one temperature.

Figure 2. The critical correlation function exponent η as a function of temperature. Within the error
bars, we conclude that η is a constant indeed.

The critical behavior of ξ for our binary liquid in an aerogel is compared to the one for
the same binary liquid in the absence of an aerogel, which satisfies ideal Ising behavior [29],
shown in Figure 3.

We also indicate the size of the pore RP, where a transition of the behavior for our
confined system could be expected. Nevertheless, a perfect power law behavior is observed
with a critical exponent of ν = 1.24 ± 0.05. For most of the temperatures, the ξ of the ideal
Ising system lies below, and the critical exponent is considerably lower (ν = 0.63). So,
the stronger growth of ξ in our liquid in aerogel indicates less interactions of domains
with neighboring domains, similar to the ideal case of lower dimensionality [29,32]. The
compartments of single pores are slightly isolated from neighboring pores.

Figure 3. The correlation length as a function of the reduced temperature. The solid symbols indicate
the experimental data for the liquid system with aerogel (RFIM), and the open symbols indicate the
experimental data obtained earlier for the liquid system without aerogel (ideal) satisfying ideal Ising
criticality [29] . The lines indicate the critical scaling (Equation (4) with weighted errors). The errors
bars are all shown and may be smaller than the size of the symbols if invisible.

The criticality of the amplitude IRF(0) is depicted in Figure 4. Again, we see a very
simple power law behavior with a critical exponent γRF = 1.06 ± 0.05. From the study
by Sinha [16], we infer the scaling between the two amplitudes IRF(0) and IOZ,mod(0) and
apply it to our data to obtain a good guess for IOZ,mod(0). They are similar to those found
for the ideal Ising mixture. However, the critical exponents of the binary liquid in aerogel
differ (γ = γRF/(2 · 0.358) = 1.48 ± 0.15) (see also Appendix A) substantially from those
for the ideal Ising liquid mixture (γ = 1.24). This difference would be dominating much
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closer to the critical temperature. Again, this would also indicate less interactions between
neighboring domains, just less pronounced here.

Figure 4. The forward scattering as a function of the reduced temperature from the two different
terms of Equation (1) (crosses and solid symbols) compared to data obtained earlier (open symbols)
for the liquid system without aerogel (ideal) satisfying ideal Ising criticality [29]. The lines indicate
the critical scaling (Equations (3) and (5) with weighted errors). The errors bars are all shown and
may be smaller than the size of the symbols if invisible.

We stress here that in either case of the critical behavior (ξ and IRF(0)), there is no
indication of a change when ξ is crossing the pore size RP. This indicates that our binary
liquid is only weakly interacting with the aerogel, i.e., there seems to not be a strong
preference of either component to the glass. Then, the correlation length ξ may grow
unhindered, and it may exceed the pore size RP. However, there is a tendency to fill
pores quite completely, and the interactions between neighboring pores are reduced [14],
similar to the ideal case of lower dimensionality (2 dimensions: γ = 7/4, ν = 1 and
η = 1/4 [33]). This is expressed by larger critical exponents and the larger values of ξ and
IRF(0) when approaching the critical temperature. The much larger exponent η indicates
sharper interfaces between the domains compared to the ideal Ising behavior.

When we consider the connections of the three critical exponents, γ, ν and η, that we
determined independently, there are theoretical scaling relations that could help to verify
the validity of our measurements. The classical relation γ/ν = 2 − η [34] holds well within
the experimental errors. But also, the hyperscaling relation γ/ν = d/2 − β [34] seems to
be only slightly off when we assume that ±0 ≲ β ≲ 0.35 [20,26]. So, we would not really
prefer one of the two scaling relations.

Lastly, we discuss the shift of the critical temperature from the ideal Ising liquid
mixture (Tc = 36.8 ◦C) to our liquid mixture in an aerogel (Tc = 44 ◦C). So, the one phase
region is extended by exposing the fluid to the aerogel. This is similar to adding ions to the
fluid [35]. Thus, the two disturbances seem to act similarly here.

5. Summary

We presented an analysis of our SANS curves obtained for the binary 3MP/D2O
fluid in a light-weight porous aerogel as a function of temperature. From the data at high
scattering wave numbers Q, we obtained the critical correlation function exponent η. We
also determined the critical behavior of the correlation length ξ and the amplitudes of the
Ornstein–Zernike scattering and the response function, i.e., IOZ,mod(0) and IRF(0), yielding
the critical exponents ν and γ. We found that the critical exponent values for our binary
liquid system, as well as the scaling relations, are in substatial agreement with values
reported in the literature for the RFIM. Thus, we conclude that our fluid in the aerogel
displays the criticality of the RFIM. The trend toward higher values of the exponents is to
be seen in parallel to lower dimensionalities because the coordination number of the pores
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is reduced with respect to ideally free domains. The RFIM-like critical exponent values
found from our experiments are the first ones of this kind obtained for liquid systems.

The constant cut-off between the Ornstein–Zernike and response function scattering,
the very high amplitude IRF(0) and the extremely high exponent η let us conclude that the
pores in the aerogel are filled with quite pure components, and the interfaces between the
domains are quite sharp. This finding might be interesting for the formulation of synthetic
tissues for drug release, for the finding of membranes that skim fluids and for constructing
scaffolds, i.e., membranes, for fuel and electrolyzer cells.

Author Contributions: Conceptualization, H.F.; measurements, E.S.; formal analysis, H.F. and D.S.;
data curation, P.S.D.; validation, P.S.D., D.S. and O.H.; writing–original draft preparation, H.F.;
writing–review and editing, H.F. and J.V.S.; supervision, H.F. and S.F.; funding acquisition, S.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This project received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 101034266.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Scaling of the amplitudes IOZ(0) and IRF(0)

In this work, we only were able to extract the temperature dependence of the amplitude
IRF(0) for the response function, while the amplitude IOZ(0) was hidden below the much
stronger response function term. Additionally, the nearly constant cutoff of the response
function term did not allow for the extrapolation of the high-Q scattering to a forward
scattering Q → 0. So, we tried to obtain an estimate of the Ornstein–Zernicke amplitude
IOZ(0) using the empirical scaling that Sinha obtained in his experimental study [16]. We
collected his amplitudes of the response function α0 (α2

0 ∼ IRF(0)) as a function of the
amplitude and the Ornstein–Zernicke term χ ∼ IOZ(0) and obtained a scaling relation with
an exponent ϵ (Figure A1). For his data sets with different concentrations ϕL, we obtained
an average ϵ = 0.358 ± 0.020 for the scaling α0 = α̂0χϵ. We just have to stress that his
scaling was obtained for a 2,6-lutidine/D2O mixture in a porous vycor glass. However, we
believe that the scaling exponent ϵ should be rather universal.

Figure A1. The amplitude of the response function α0 as a function of the Ornstein–Zernicke
amplitude χ from the experiments of Sinha [16] for the system of 2,6-lutidine/D2O mixture in porous
vycor glass. An apparent average slope of 0.36 was determined. Error bars appear within the symbols.
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Table A1. Summary of the parameters determined experimentally from SANS experiments.

Parameter
in Aerogel Value Equation Figure

Df 2.44 ± 0.03 (2) Figure 1

ξG 9.8 ± 0.2 nm (2) Figure 1

η 0.7 ± 0.1 (1) Figure 1

0.69 ± 0.01 cst. Figure 2

γ 1.48 ± 0.15 (3) Figure 4

ν 1.24 ± 0.05 (4) Figure 3

γRF 1.06 ± 0.05 (5) Figure 4

I0 0.040 ± 0.009 cm−1 (3) Figure 4

ξ0 0.071 ± 0.013 nm (4) Figure 3

IRF,0 18.3 ± 2.8 cm−1 (5) Figure 4

TC 44 ± 1 ◦C – –

in bulk reference

η 0.04 ± 0.04 – [32]

γ 1.239 fixed (3) [29]

ν 0.629 fixed (4) [29]

I0 0.088 ± 0.003 cm−1 (4) [29]

ξ0 1.15 ± 0.03 nm (3) [29]

TC 36.8 ± 0.3 ◦C – [29]
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