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A B S T R A C T

Battery energy storage systems (BESS) can complement the variability of local renewable energy sources.
However, existing research focuses on the design of BESS for electricity systems, mainly neglecting interaction
with other energy vectors, e.g., the thermal vector. This study investigates the impact of explicitly modelling
the thermal vector on the optimal design of BESS within local multi-energy systems. A holistic problem,
including the nonlinear representation of the AC power flow, was developed within a non-convex mixed
integer quadratically constrained program formulation. Two modelling approaches were employed: the explicit
modelling of the thermal vector, and its implicit consideration within an all-electric demand model. These
approaches were applied to investigate the impact of neglecting the thermal vector on the optimal BESS
design in two real-world case studies. A constant and a time-varying electricity tariff, and three different
solar irradiance scenarios were investigated. The results show significant BESS oversizing, higher annual costs
and higher global warming impact when neglecting the explicit model of the thermal vector, both within a
building and a local energy community. A time-varying electricity tariff enhances the BESS oversizing, with
up to 20.5% oversizing for the BESS for a high solar irradiance scenario. Moreover, the annual costs of the
all-electric demand model are around 8% higher compared to the explicit multi-energy model. Our findings
clearly state the importance of explicitly modelling the coupled thermal vector during the sizing of electrical
storage systems.
1. Introduction

The goal of limiting the global temperature rise to 1.5 ◦C requires a
rapid transition towards low-carbon technologies and different energy
system designs [1]. An emerging concept for future energy systems
are local energy communities (LEC), i.e., organisations or groups of
individuals that jointly generate, distribute and consume energy within
a specific geographic area. Local energy communities are recognised by
the European Union in the EU Clean Energy Package as future key fea-
tures to involve individual households and value-driven organisations,
rather than profit-driven companies [2]. The interest in LECs is driven
by several factors, including a way to increase the share of renewable
energy in the grid, create a more decentralised energy system and
promote energy efficiency by avoiding transmission losses over long
distances [3–5].
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A common way to increase the self-sufficiency of LECs or a building
equipped with local renewable energy sources (RES) such as photo-
voltaic (PV) arrays is the addition of battery electrical storage systems
(BESS). Both within single buildings and LECs, BESS can reduce the
peak power of the electricity import and export, increase the self-
consumption rate of the energy system combined with RES, and reduce
annual costs [6–8]. Moreover, a communal BESS within an energy com-
munity, such as a LEC, has demonstrated its effectiveness in harnessing
the full potential of energy systems, in particular in terms of cost sav-
ings, energy storage utilisation and self-sufficiency of the overall energy
system [9–11]. However, these studies usually completely neglect or
merely include the heating demand within so-called all-electric demands
only. Representing heating demand as fixed equivalent electrical de-
mand implies no interaction between heat and power vectors. Yet, the
shift towards low-carbon technologies incentivises the electrification
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Nomenclature

Indices and Set

𝑖, I Electric bus index, set of electric buses
𝑘, K Electric bus index, set of electric buses
𝑠, S Scenario day index, set of scenarios
𝑡, T Time step index, set of time steps

Parameters

𝛥𝑡 Time step [h]
𝜂in∕outbess BESS charging / discharging efficiency [%]
𝐶bess / 𝐶bess Minimum / maximum BESS capacity [kWh]
𝑈 i / 𝑈 i Lower / upper voltage limit at bus 𝑖 [p.u.]
𝑎ik Transformer tap ratio between buses 𝑖 and 𝑘
𝑏ik Line susceptance between buses 𝑖 and 𝑘 [p.u.]
𝑏 sh
ik Shunt susceptance between buses 𝑖 and 𝑘 [p.u.]
𝐶f ix Annual fixed cost [e ]
𝑐f ix Relative fixed cost [%]
𝐶i Overall investment cost [e ]
𝐶tac Total annualised cost [e ]
𝐶var Annual variable cost [e ]
𝑐var Variable cost [e /kWh]
𝑓ann Annuity factor [1/a]
𝑔ik Line conductance between buses 𝑖 and 𝑘 [p.u.]
𝐾bd Thermal building capacitance [kWh/◦C]
𝑜𝑠,𝑡 Value of operational quantity [kWh]
𝑤𝑠 Weight of scenario day 𝑑

Variables

𝑚̇ eva∕con
hp HP evaporator / condenser mass flow rate [kg/s]

𝑚̇hs Mass flow rate of heat source [kg/s]
𝑚̇ltdh Mass flow rate within LTDH network [kg/s]
𝑄̇ out

hp Thermal output power of heat pump [kWth]
𝑏bess Binary variable for BESS installation
𝑏 op
hp Binary variable for heat pump operation
𝐶bess BESS capacity to be installed [kWh]
𝐸i Real part of complex voltage at bus 𝑖 [p.u.]
𝐹i Imaginary part of complex voltage at bus 𝑖 [p.u.]
𝑃 in ∕ out
gr Active power exchange with external grid [kW]

𝑃pump Active power of network pump [kW]
𝑄gr Reactive power exchange at external grid [kVAr]
𝑇bd Building temperature [◦C]
𝑇 f l
ltdh Flow temperature within LTDH network [K]

𝑇 ret
ltdh Return temperature within LTDH network [K]

𝑈i Voltage magnitude at bus 𝑖 [p.u.]
𝑃hp Active power input of heat pump [kW]
𝑃i Active power at bus 𝑖 [kW]
𝑄i Reactive power at bus 𝑖 [kVAr]
SOCbess BESS state of charge [kWh]
SOCtes TES state of charge [kWh]

of heating solutions, e.g., replacing gas and oil heating systems with
electric heat pumps. The increasing heat pump installations couple the
electricity and the heating sector and thus complement the concept
of local multi-energy systems (MES), which contain multiple energy
commodities, e.g., electricity, heat and gas. By exploiting the interde-
pendencies and interactions of the energy flows and storage options
2

of the different commodities, MES can further increase grid stability
and reduce energy costs [12–15]. Therefore, only considering the elec-
trical domain for the design of electrical components – even when
considering for instance the electrical consumption due to heating as
a predefined time series – neglects possible flexibility provided by the
interaction between coupled commodities.

A model-based optimisation is a suitable tool for the operation
and planning of energy systems [16]. However, the modelling for the
design and operation of MES can be technically challenging. Inte-
grating different technologies with interdependent commodities must
consider the coordination of energy flows between different sources
and storage options. These complex constraints must already be con-
sidered during the design stage of system components, as their design
determines the operation of the multi-energy system [17,18]. This
results in complex problem formulations, and thus the detailed model
representation of multiple commodities for optimisation purposes can
be computationally expensive.

Existing work tackles the computational and modelling challenges
of the design and operational optimisation of MES by an iterative
approach or by using mixed-integer linear programming (MILP) mod-
els. An iterative approach lifts the computational burden of modelling
an MES. Here, the first stage usually includes the linear operational
optimisation of the components without networks. Based on the output
of the first stage, the second stage then simulates the nonlinear network
operation. Identified power losses and violated network constraints are
linearised and included in the next iteration of the linear model until
convergence. For instance, the iterative approach is applied for the
operational optimisation of MESs with integrated electricity-heat-gas
networks [19–22]. However, these studies either model only a linear
behaviour of networks and components, or solely focus on the MES
operation and neglect the component design.

Using MILP models is a common way of modelling the design
and operation of distributed MES by one holistic problem formula-
tion [23,24]. Here, the nonlinear behaviour of energy components such
as the power grid and heating network is linearised. The linearisa-
tion is applied for the consideration of seasonal storage [25,26], in
large-scale transmission and investment planning systems [27,28], and
the representation of an MES as an energy hub, which models the
conversions of different energy forms as a multi-input multi-output
conversion component [29]. For instance, an optimal capacity design
and operation of islanded energy hubs supporting electricity and heat
demand is investigated in [30]. A chance-constrained optimisation and
a robust counterpart problem formulation are employed to address
stochastic RES generation and load while balancing robustness and cost
efficiency. The energy system consists of the energy vectors electricity,
gas, hydrogen and heat, while the gas and electrical networks were
explicitly modelled. The latter is modelled by the linear DC power flow,
which is an accurate approximation for high-voltage networks, but does
not apply to medium- and low-voltage networks. Another work [31]
presents a MILP formulation combined with energy hubs for integrated
design and operation of distributed energy systems and optimal heating
network layouts. While their approach provides valuable insights into
the design and operation of energy hubs, it overlooks BESS sizing
considerations and linearises the physical behaviour of components and
networks. Neglecting nonlinear behaviour or losses in the power grid
could lead to suboptimal design choices. In another work by [32], the
optimal design and operation of PV-battery systems considering cou-
pled HPs are analysed. Their MILP model demonstrates the impact of
increased HP penetration on the return of PV-battery systems. However,
this study does not consider an electrical network or heating network
In [33], a generic framework was developed for the optimal design and
operation of distributed energy systems. While their multi-objective op-
timisation with an augmented epsilon-constrained technique accounts
for cost and global warming impact greenhouse gas emissions, it is
based on a MILP formulation which neglects nonlinear component and
network behaviour. Similarly, a framework for designing sustainable

multi-vector energy hubs supplying electricity and thermal energy
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was proposed in [34], where detailed technology models are used to
optimise the energy system regarding global costs and emissions via a
multi-objective function. However, a MILP formulation is used and no
internal power grid is considered.

While the issue of designing and operating a multi-vector energy
hub is widely investigated in the scientific literature, the consideration
of detailed component and network models is not yet fully explored
for these studies. With the increasing electrification of the heating
sector and its coupling with the electricity sector, a comprehensive
analysis involving detailed modelling of all coupled sectors becomes
crucial for optimal design choices. In particular, despite the above-
displayed advantages of BESS for energy communities, there is a lack
of studies that thoroughly analyse the sizing of BESS within a MES.
More specifically, there is a gap in understanding how incorporating
the coupled heat vector influences the design of BESS: how the thermal
inertia of a building affects the BESS sizing. The impact of considering
heat on the sizing of BESS has, to the best knowledge of the authors, not
been assessed in the literature. Moreover, the design and operation of
MES within one holistic optimisation problem considering the heating
network and exact power flow equations have not been presented yet
in the literature.

The presented work bridges the above-mentioned knowledge gaps.
A BESS is to be retrofitted for an existing MES with coupled electricity
and heat, which is assumed to be controlled by a perfect energy
management system. The key novelty and contributions of the work
presented in this paper are as follows:

• Definition of an MES model with heat and electricity vectors for
the optimisation-based sizing of a BESS, including the nonlinear
representation of the AC power grid, the heating network and a
quadratic heat pump model

• Comparison between a integrated multi-energy system and an
all-electric system for the optimal sizing of a BESS

• Analysis of different solar irradiance years and time-varying and
constant electricity tariffs on BESS sizing

• Application of the multi-energy and all-electric modelling ap-
proach to two real-world case studies based in Germany (a single
building and a local energy community)

The paper is structured as follows. Section 2 introduces the method-
logy and component modelling of the MES. To investigate the ques-
ions mentioned above, two case studies are presented. The results of
hese studies, including the component design and the system opera-
ion, are provided and analysed in Section 4, followed by the discussion
f the results. Section 5 concludes the work.

. Methodology

The flowchart of the implemented algorithms is depicted in Fig. 1.
nitially, the input data is pre-processed and clustered into several rep-
esentative scenario days. Then, these clusters and further parameter
ata are given to the two-stage stochastic model structure. The first
tage determines the optimal investment decisions based on the given
et of scenarios for time-varying load profiles, solar irradiation and
lectricity prices, while the second stage finds the optimal operation
trategy of the overall system.

.1. Component modelling

The modelling approach within this work is based on component-
riented modelling, allowing for a modular and scalable system design
nd operation which is required for energy communities. In the follow-
ng, the energy components included in the MES under consideration
re introduced and their functionalities are briefly presented. This
ncludes the battery electric storage system, the photovoltaic array,
he power grid, the heating network, the heat pump and the thermal
uilding model.
3

2.1.1. Battery energy storage system
The BESS is modelled as a lithium-ion battery connected to a

bidirectional inverter which enables charging and discharging of both
active and reactive power. The model includes energy losses consid-
ering distinct charging and discharging efficiencies, a self-discharge
rate of the battery, and limits on the apparent power, leading to the
following governing equations:

dSOCbess
d𝑡

=
𝜂 in
bess𝑃

in
bess − 𝑃 out

bess
/

𝜂 out
bess −

1
𝜏bess

SOCbess

𝐶 des
bess

, (1)

𝑆2
bess = 𝑃 2

bess +𝑄2
bess ≤ 𝑆

2
bess, (2)

𝑃 bess ≤ 𝑃bess ≤ 𝑃 bess, (3)

𝑄
bess

≤ 𝑄bess ≤ 𝑄bess, (4)

𝑏bess𝐶bess ≤ 𝐶 des
bess ≤ 𝑏bess 𝐶bess, (5)

𝑃 in
bess ⋅ 𝑃

out
bess ≤ 0. (6)

Here, SOCbess represents the state of charge of the BESS at a specific
oint in time, 𝜂 in

bess and 𝜂 out
bess are the constant charging and discharg-

ng efficiencies, 𝑃 in
bess and 𝑃 out

bess represent the charging and discharg-
ng power, and 𝜏bess is the time constant describing the relative self-
ischarge of the BESS per hour. An upper and lower power limit
onstrains the charge/discharge power 𝑃bess. The upper limit 𝑃 bess
s chosen to be the power to charge/discharge the BESS within one
our, and the lower limit 𝑃 bess is zero. The BESS capacity 𝐶 des

bess is
implemented as a design variable which is constrained by a minimum
size 𝐶bess, a maximum size 𝐶bess, and the binary variable 𝑏bess modelling
whether the BESS is built. 𝐶bess is 5 kWh which is also included in the
BESS investment cost (see Eq. (27)), whereas there is no upper limit
for the BESS capacity. Furthermore, the incoming or outgoing active
power is limited by the power rating 𝑆bess of the inverter connected
to the BESS, which is equal to the upper power limit of the BESS.
Eq. (2) inherently implies that the power inverter can provide positive
or negative reactive power within its power limits.

2.1.2. Photovoltaic array
The PV array is implemented as an active power source connected

to a DC-AC inverter. The power inverter connected to the PV array can
absorb or produce reactive power within a range of the power factor
cos𝜑 ∈ [0.9cap, 0.9ind], which is defined as the ratio of active power to
apparent power. This leads to the following constraints:

−0.484 𝑃pv ≤ 𝑄pv ≤ 0.484 𝑃pv, (7)

𝑃pv ≤ 𝑃 pv. (8)

Here, 𝑄pv is the reactive power, 𝑃pv is the active power supply and
𝑃 pv represents the maximum power supply of the PV panel determined
by the solar irradiance at each time step. Negative reactive power
values represent injection and positive values represent consumption
of inductive reactive power.

2.1.3. Power grid
The power flow equations are implemented in rectangular coor-

dinates, i.e., an exact representation of the power flow formulation.
The nonlinear trigonometric terms of the polar voltage representation
as presented in [35] are replaced with bilinear constraints. The non-
convex quadratic formulation based on [36] is implemented as follows:

𝑈i = 𝐸i + 𝑗𝐹i, (9)

𝑃ik = 𝑔ik𝑎
2
ik
(

𝐸2
i + 𝐹 2

i
)

− 𝑔ik𝑎ik
(

𝐸i𝐸k + 𝐹i𝐹k
)

− 𝑏ik𝑎ik
(

𝐹i𝐸k − 𝐸i𝐹k
)

,
(10)

𝑄ik = − 𝑎2ik
(

𝐸2
i + 𝐹 2

i
)

(

𝑏ik +
𝑏shik
2

)

( ) ( )

(11)

+ 𝑏ik𝑎ik 𝐸i𝐸k + 𝐹i𝐹k − 𝑔ik𝑎ik 𝐹i𝐸k − 𝐸i𝐹k .
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Fig. 1. Flowchart of the implemented algorithm.
ere, 𝐸i represents the real part and 𝐹i the imaginary part of the
omplex voltage 𝑈i, with 𝑗 =

√

−1 being the imaginary unit in the
omplex domain. 𝑃ik and 𝑄ik are the active and reactive power transfer

across a line from bus 𝑖 to bus 𝑘, 𝑏ik is the line susceptance, 𝑔ik is the
line conductance, 𝑏shik is the shunt susceptance and 𝑎ik is the voltage
tap ratio of the transformer with a default value of 1. The magnitude
limitations for the voltage rectangular coordinates require functional
inequality constraints instead of direct enforcement, as is usually done
for the polar coordinates, see [36]. The line capacity limits are included
by the following constraints for the bus voltage and the line capacity:

(𝑈 i)
2 ≤ 𝐸2

i + 𝐹 2
i ≤ (𝑈 i)2, (12)

𝑃 2
ik +𝑄2

ik ≤ (𝑆 ik )2. (13)

Here, 𝑈 i and 𝑈 i represent the lower and upper limit of the voltage
agnitude, and 𝑆 ik the apparent power limit of each line.

.1.4. Heating network
The heating network operates as a low-temperature district heat-

ng (LTDH) network. Its lower operating temperature allows for the
fficient use of waste heat (WH) as a heat source. This waste heat
an come from various sources, e.g., industrial processes or high-
erformance computers. The LTDH network connects the waste heat
ith the buildings. To meet the required building supply temperature,
eat pumps are employed in each building to elevate the temperature
evel as needed. The temperature entering the evaporators of the heat
umps is the same for all buildings. The governing equations of the
TDH network are as follows:

̇ ltdh =
∑

bd∈B
𝑚̇ evap
bd , (14)

̇ loss =
(

𝑇 f l
lthd − 𝑇gr

)

⋅ ℎloss ⋅ 𝐴+
(

𝑇 ret
lthd − 𝑇gr

)

⋅ ℎloss ⋅ 𝐴,
(15)

pump =
𝛥𝑝 ⋅ 𝑚̇ltdh

𝜂pump ⋅ 𝜌H2O
. (16)

Here, 𝑇 f l
ltdh is the flow temperature and 𝑚ltdh represents the mass flow

of the LTDH network. The heat transfer coefficient is denoted by ℎloss, 𝐴
represents the surface area of the pipes and 𝛥𝑝 represents the pressure
drop of the pipe network. The losses of the network are calculated
by a heat loss correlation between the ground temperature, and the
respective flow and return temperature of the pipes. The electric power
of the pump is denoted as 𝑃pump, 𝜂pump is the pump efficiency and 𝜌H2O
is the density of water. Further details on the modelling of the heating
network can be found in [37].
4

2.1.5. Heat pump
The implemented model for the heat pump (HP) is based on a water-

to-water heat pump extracting heat from a district heating network at
its evaporator side and supplying heat at a higher temperature on its
condenser side to the building energy system. The HP is modelled with
two ports, one at the evaporator and one at the condenser. Each port is
characterised by the flow temperature, the colder return temperature,
and the respective mass flow rate. The efficiency of the HP behaves
non-linearly, decreasing at lower load conditions due to increased heat
transfer rates and increased cycling losses. The detailed model of the
heat pump is based on previous work of our research group [37]. The
HP model includes the part-load behaviour of the heat pump by a
Glover reformulation based on [38,39], which leads to a quadratic for-
mulation of the part-load behaviour. The overall governing equations
are as follows:

𝑃hp = 𝑄̇ con
hp − 𝑄̇ eva

hp , (17)

𝑄̇ eva
hp = 𝑚̇ eva

hp ⋅ 𝑐p ⋅
(

𝑇 eva,in
hp − 𝑇 eva,out

hp

)

, (18)

𝑄̇ con
hp = 𝑚̇ con

hp ⋅ 𝑐p ⋅
(

𝑇 con,out
hp − 𝑇 con,in

hp

)

, (19)

𝑃hp ⋅ 𝜂hp ⋅ 𝜂
pl
hp =

⎛

⎜

⎜

⎝

𝑇 con,out
hp − 𝑇 eva,out

hp

𝑇 con,out
hp

⎞

⎟

⎟

⎠

⋅ 𝑄̇ con
hp , (20)

𝑃hp ⋅ 𝑇
con,out
hp ⋅ 𝜂hp =

(

𝑇 con,out
hp − 𝑇 eva,out

hp

)

⋅
(

0.029 ⋅ 𝑄̇max
hp ⋅ 𝑏 op

hp + 0.993 ⋅ 𝑄̇ con
hp

)

.
(21)

Here, 𝑃hp represents the electric power of the heat pump. 𝑄̇ con
hp

and 𝑄̇ eva
hp are the thermal power at the condenser and the evaporator

with their respective input and output temperatures 𝑇 eva,in∕out
hp and

𝑇 con,in∕out
hp and their mass flow 𝑚̇ eva∕con

hp . 𝜂hp is the device efficiency of
the heat pump and 𝜂plhp represents the part-load efficiency. The device
efficiency is assumed to be constant at 0.6. The overall efficiency of
the HP is calculated by both the device efficiency and the part-load
efficiency, with the latter being integrated into Eq. (21) based on
the maximum thermal output power 𝑄max

hp and a boolean variable 𝑏 op
hp

indicating whether the heat pump is operating or not. To reduce the
number of quadratic constraints for scalability, a constant temperature
difference at the evaporator of 𝛥𝑇 = 10K is assumed. Additionally, a
discontinuous operation of the heat pump is assumed [40], and thus
no time-coupling constraints for minimum operational or shutdown
times are implemented. The constant parameters in Eq. (21) were fitted
to represent the part-load efficiency of water-to-water HPs based on

experimental data according to [39].
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2.1.6. Thermal building model
In this work, two types of thermal storage systems within a building

are considered, namely the hot water storage (HWS) and the dwellings
of the building. The HWS stores heated water for domestic use and thus
acts as a supply-side buffer, whereas the building dwellings can inter-
nally absorb, store and release heat over time and thus help regulate
indoor temperature against external temperature fluctuations [41]. The
thermal building model combines the HWS and the dwellings of the
building within one lumped parameter, which is defined as thermal
energy storage (TES). The TES depends on the thermal capacity 𝐾bd
representing the thermal inertia of the building dwellings and the HWS.
The TES is heated up by the thermal power 𝑄̇in from the HP, and it
releases its thermal output power 𝑄̇out to a deterministic heat demand
(HD) which is based on historical data. The temperature 𝑇bd represents
the building’s temperature within its comfort temperature limits, which
is assumed to be between 19 ◦C and 22 ◦C. The governing equations are
as follows:
d𝑇bd
d𝑡

=
𝑄̇ in

tes − 𝑄̇ out
tes

𝐾bd
, (22)

𝑇 bd ≤ 𝑇bd ≤ 𝑇 bd. (23)

.2. Problem formulation and implementation

The case studies are modelled within the open-source energy sys-
em optimisation framework COMANDO [42]. Its two-stage stochastic
rogramming structure allows for the optimal design and operation
f multi-energy systems such as local energy communities. The sys-
em model is composed of the above-described component models.

ithin a building, the components are connected via balancing nodes,
hereas the energy carrier networks of the LEC are represented by

he power grid and the heating network components, respectively.
his enables the consideration of the interactions between different
omponents, commodities and the overall system, resulting in accurate
nd comprehensive results.

It is assumed that a centralised instance controls the MES com-
onents. In contrast to local control systems that focus on individual
omponents, a centralised coordinated control system considers the
ptimal operation of the entire MES, including all commodities and
heir interaction with each other. Such a systematic approach allows
he coordinated integration of distributed RES, electrical energy storage
ystems and the interaction of energy vectors with each other.

The optimisation problem is formulated as a non-convex Mixed-
nteger Quadratically Constrained Program (MIQCP). This study aims
o determine the most cost-effective battery capacity for a pre-existing
ES. This is carried out by minimising the total annualised cost 𝐶tac of

he MES, calculated as follows:

tac = 𝐶i𝑓ann + 𝐶f ix + 𝐶var , (24)

= 𝐶𝑖 𝑓ann + 𝑐fix 𝐶𝑖 + 𝑐var
∑

𝑠∈S
𝑤𝑠

∑

𝑡∈T
𝑜𝑠,𝑡 𝛥𝜏. (25)

Here, the overall investment cost 𝐶i, the annual fixed cost 𝐶f ix and
the variable operating cost 𝐶var are considered. 𝑜𝑠,𝑡 represents the value
of an operational quantity with associated cost, e.g., electricity or heat,
for a scenario day 𝑠 and time step 𝑡. 𝑤𝑠 represents the weight accounting
for the number of days assigned to each cluster, 𝛥𝑡 represents the
chosen time step duration in hours, and 𝑓ann is the annuity factor which
is calculated as follows:

𝑓 ann =
(1 + 𝑖)𝑛 ⋅ 𝑖
(1 + 𝑖)𝑛 − 1

. (26)

Here, a lifetime 𝑛 of 15 years and an interest rate 𝑖 of 6% is assumed,
resulting in an annuity factor of approximately 0.103 per year.

It is further assumed that the electricity produced by the PV arrays
and the heating power supplied by the waste heat are free of charge.
The only cost related to the heating supply is the operation of the
network pump and the heat pumps, which are included in the power
5

drawn from the external power grid. In the case studies, the variable
operational cost depends on the consumed electricity and the respective
electricity prices, and thus the operational quantity 𝑜𝑠,𝑡 refers to the
active power drawn from the external grid, which includes the internal
power losses of cables and transformers.

In the considered MES, all the components, i.e., PV arrays, heat
pumps, thermal energy storage, power grid and heating network, are
already installed, except the BESS. Therefore, their investment costs
are not included in the optimisation objective, but they only depend
on the investment cost for the BESS. The battery design capacity has
a minimum size of 𝐶bess = 5 kWh. The battery has a fixed cost of
𝑐bess,f ix = 2.5% of the investment cost per year [43], which covers the
annual maintenance cost. The investment cost of the battery is assumed
to be linear:

𝐶I,bess = 12000 + 450 ⋅ (𝐶bess − 𝐶bess). (27)

Here, smaller batteries have a higher cost per installed capacity and
bigger batteries have a lower cost per installed capacity.

The expected annual global warming impact (GWI) is further in-
cluded in our studies as follows:

GWI =
∑

𝑠∈S
𝑤𝑠

∑

𝑡∈T
GWI el𝑠,𝑡 𝛥𝜏 + GWIbess

𝐶I,bess
𝑛bess

. (28)

Here, GWI el𝑠,𝑡 is the hourly average GWI of the external power grid and
GWIbess represents the GWI per capacity of the installed BESS.

3. Case studies

In the following, we introduce the two case studies: the single build-
ing and the LEC. Both are modelled as a multi-energy system and as
an all-electric system, respectively. The all-electric system represents the
benchmark modelling approach to which the MES model is compared.
Finally, the input data for the two case studies is presented.

3.1. Single building

The case study single building is representative of an office building.
Two different models are considered for the single building case study,
namely the multi-energy building model and the all-electric building
model as shown in Fig. 2. On the one hand, the multi-energy building
model includes the HD and TES and thus accompanies the flexible
operation of the heat vector. On the other hand, the all-electric building
model represents the heat vector solely from an electrical point of
view, i.e., the heating demand is included in the load profile of the
heat pump, but any operational flexibility of the heating components
is neglected. Note that the TES is a lumped parameter representing
both the HWS and the thermal inertia of the building dwellings. The
difference between the two models is reflected in the change of the
active power consumption of the HP being an operational variable
for the multi-energy building model, compared to being a parameter
determined by the deterministic HD for the all-electric building model.

The ED is met by the electricity connection of the building, the
BESS, and the PV array. For the multi-energy building, the HD is
supplied by the TES which is directly supplied by the heat pump. The
building has a connection to the power grid and the heating network.
For the all-electric building, the heat commodity is disregarded and
only the deterministic electricity consumption of the HP is considered,
which is directly determined by the HD. Note that the PV panel can
consume or inject reactive power, but only generate active power.
Within the building, the active power and reactive power are balanced,
respectively. Note that this approach can easily be adapted to represent

any building and any composition of components within.
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Fig. 2. Internal structure of the multi-energy building model and the all-electric building
model: photovoltaic (PV) array, electric demand (ED), heat demand (HD), thermal
energy storage (TES), heat pump (HP) and the battery energy storage system (BESS)
which is to be installed and sized. Electricity is shown in yellow, hot water in red and
cold water in blue, with the arrows indicating the energy carrier flow direction.

Fig. 3. Local energy community consisting of seven buildings (Bd) including the power
grid, the low-temperature district heating (LTDH) network and the waste heat (WH).
Note that each building has a rooftop PV array installed.

3.2. Local energy community

The second case study describes a real-world LEC with the com-
modities electricity and heat, which is part of Forschungszentrum
Jülich in Germany. A sketch of the case study including the single-line
diagram of the internal power grid and the connections of the heating
network is shown in Fig. 3. The LEC is connected to the external power
grid at the 110 kV level. The external power is being transformed first
to 35 kV and then to 10 kV, where it is connected to two bus bars, each
connected to a feeder with several buildings. One community BESS is
to be sized and located at the electric bus of one of the seven buildings
which represent a mix of office and laboratory buildings. The buildings
are connected to the internal power grid at 400V via transformers, with
building two (Bd2) and building three (Bd3) sharing the same electric
bus at 10 kV. An additional PV array is directly connected to the upper
bus bar.

Similarly to the building case study, this case study is modelled both
as a multi-energy LEC model and as an all-electric LEC model. Here, the
multi-energy building models from the first case study are considered as
the buildings in the multi-energy LEC model as depicted in Fig. 2. Each
building has a warm water and a cold water connection with the LTDH
network, which is supplied by waste heat from a high-performance
computer. The evaporator mass flow of the HP along with the warm
and cold water flow is connected to the network for each building.
6

Table 1
Weights of the representative days for the building and the local energy community
(LEC).

Building Day 4 48 174 223 231 319
Weight 37 69 60 93 64 42

LEC Day 48 180 231 317 – –
Weight 84 152 62 67 – –

The amount of active and reactive power at each bus bar is deter-
mined by the active and reactive power consumption of the connected
building, respectively. The active power consumption and generation of
the BESS, PV array, ED and HP determine the active power at the bus
bar connected to the building. The ED is implemented as a time series.
In contrast, the active power input of the HP, the power generation
of the PV plant, and the power input and output of the battery are
implemented as operational variables, which are determined during
the optimisation. The same applies to reactive power. Note that the
constant power factor of the electric demand is known beforehand for
each time step. In contrast, the reactive power consumption of the heat
pump, and the reactive power injection or absorption of the battery and
the PV array determine the resulting reactive power at the connected
bus bar.

The all-electric LEC model only considers electricity and thus repre-
sents the heat vector from an electrical point of view, i.e., the seven
buildings are modelled as the all-electric building model as presented
in Fig. 2, and the LTDH network and the WH are not modelled. The
electricity demand of the HP is directly determined by the deterministic
HD and thus is implemented as a time series.

3.3. Input data

The representative scenarios for heat demand, electric demand,
PV irradiation, ambient temperature and electricity price are based
on historical data. The PV data was generated for the location of
Jülich, Germany, from the year 2019 based on [44]. The values for
heating and electric demand are taken from local measurement data
at Forschungszentrum Jülich. The k-medoids are used for clustering, as
it has been demonstrated to be an effective algorithm for aggregating
time-series data in energy systems [45]. Therefore, a time-series aggre-
gation [46] is employed, resulting in representative scenario days. The
scenario days have a respective weight 𝑤d according to the number of
days assigned to the cluster. For the building case study, the data was
clustered into six scenario days with a time step length of one hour.
Conversely, due to the computational burden of the model for the LEC
case study, the aggregated data for the LEC was clustered into four
scenario days, with twelve time steps of a constant length of 𝛥𝜏 = 2 h.
The representative scenario days for the single building case study are
depicted in Fig. A.1, and for the LEC case study in Fig. A.2. The weights
of the representative days are listed in Table 1.

The SOC of the BESS and the building temperature at the initial
and final time steps of each representative day were set to be the same,
respectively, with the specific values being determined by the optimisa-
tion. This ensures that no energy is transferred between representative
days. Both case studies further consider a time-varying and constant
electricity tariff to assess the impact of the type of electricity price tariff
on the BESS sizing. The time-varying tariff incentivises load shifting
to off-peak periods that align with lower electricity prices, resulting in
peak-shaving and economic savings for buildings with batteries [47].
Input parameter values for BESS, PV data input and average of the
time-varying electricity tariff are listed in Table 2, with the latter
being used as the price for the constant electricity tariff. The input
parameters for the components of the respective buildings are listed in
Table A.1, including the values for the thermal storage of each building.
The buildings, constructed between 1960 and 2011, have different
sizes and temperature requirements. Depending on the size and the
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Table 2
Key input parameters.

Component Description Parameter Value

PV High irradiance year capacity factor 14.7%
PV Medium irradiance year capacity factor 14.0%
PV Low irradiance year capacity factor 13.8%
BESS charging efficiency 𝜂 in

bess 95%
BESS discharging efficiency 𝜂 out

bess 95%
BESS self-discharge rate 𝜏bess 0.5%∕h
Grid Time-varying tariff average price 29.78 ct/kWh
Grid feed-in tariff revenue 5 ct/kWh

material of the building, their thermal capacity ranges from 100 kWh∕°C
to 600 kWh∕°C. Furthermore, they can be categorised into two groups
with respective input temperatures of 85 ◦C and 70 ◦C, representing the
temperature requirement of the building for an ambient temperature of
−12 ◦C. This input temperature is implemented as the condenser output
temperature of the HP.

The GWI data for the external power grid and the BESS are sourced
from licensed data from the ecoinvent database 3.9.1 as done in [48].
Specifically, the GWI data for the BESS is based on the market for a
rechargeable, prismatic LiMn2O4 lithium-ion battery [49]. The opti-
misations are performed on a 1.8GHz Intel Core i7-1265U CPU with
32GB of RAM using Gurobi 10.0.1 [50] allowing non-convex quadratic
constraints.

4. Results and discussion

In this section, the sizing of a retrofitted BESS within a multi-energy
system is assessed. In Section 4.1, the results for a single building
are presented, followed by designing a community BESS within a
LEC in Section 4.2. For both case studies, the impact of time-varying
and constant electricity prices on the BESS design is further assessed.
Section 4.3 discusses the presented results.

4.1. Single building

For the single building case study, the BESS sizing results for the
multi-energy and the all-electric modelling approaches are listed in

able 3. For a time-varying electricity tariff, the BESS capacity for
he all-electric building is significantly bigger with an optimal size of
4.1 kWh compared to the multi-energy building with an optimal size
f 14.4 kWh. For a constant electricity tariff, the BESS capacity for
he all-electric building model and teh multi-energy model are within
similar range. The main reason for the smaller BESS size, especially

or the time-varying tariff, is the considered TES which is coupled to
he electricity system via the HP. The thermal inertia of the building
rovides additional flexibility which partly replaces the electrical flex-
bility offered by the BESS, thus resulting in a smaller BESS capacity.
dditionally, the total annualised cost for the multi-energy model is
etween 6.1% and 6.5% lower than for the all-electric building model.
his shows that explicitly modelling the operational flexibility of the
eat coupled to electricity leads to lower system annualised cost. It
an be further noted that the total annualised cost for the constant
lectricity tariff are 1.1% to 1.6% higher than for the respective model
ith time-varying electricity prices. The inability to exploit the time-
arying tariff and shift demand to low-price hours results in an increase
n the overall system cost.

The operational schedules for the multi-energy building and the all-
lectric building for six scenario days are depicted in Fig. 4. Positive
alues correspond to consumption and negative values represent gen-
ration. The active power is depicted with the state of charge (SOC) of
he BESS, and for the multi-energy building model, the heat is depicted
ogether with the building temperature. In the top part of Fig. 4(a), it
7

an be seen that the power consumption of the HP directly follows the g
Table 3
Optimal BESS size, annualised design and operational cost for the multi-energy building
model and the all-electric building model for the time-varying and the constant
electricity price tariff, respectively.

Tariff Building model BESS size TAC GWI

Time-varying Multi-energy 14.4 kWh 35.5 ke ∕a 65.8 tCO2
∕a

All-electric 54.1 kWh 37.8 ke ∕a 65.6 tCO2
∕a

Constant Multi-energy 9.3 kWh 35.9 ke ∕a 66.8 tCO2
∕a

All-electric 10.0 kWh 38.4 ke ∕a 71.9 tCO2
∕a

heat demand, thus creating a deterministic HP load profile for the all-
electric model in the middle part of the figure. The BESS is fully charged
and discharged1 once during each day, taking advantage of the price
fluctuations during each scenario day and the electricity generation
of the PV array. The BESS is usually charged during hours of low
electricity prices or hours of solar irradiance, and discharged during
hours of high electricity prices. Due to the fixed power factors of the
HP and the ED, the reactive power demand is deterministic, which is
compensated by the reactive power injection of the BESS and the PV
array.

For the multi-energy building, a significant difference can be ob-
served for the HP operation in the upper part of Fig. 4(b), as it does
not follow the heat demand directly. Instead, the HP mainly operates
during hours of low electricity prices and high solar irradiation, to
meet the heat demand and further charge the TES as can be seen by
an increasing building temperature. The HP thus makes use of the
thermal inertia of the building by heating it prior to times of high
electricity prices, and thus less heating during high-priced hours is
required. The building is heated during hours of solar irradiance and
its thermal storage is exploited during evening hours. This pattern can
be especially observed during scenario days 174, 223 and 231, which
represent warmer months of the year with low heat demand and high
solar irradiation. Moreover, the HP mainly operates at full load as its
efficiency increases with an increasing load utilisation. The BESS for the
multi-energy building model is significantly smaller, but it has a similar
operating pattern as the all-electric building model. Therefore, it can be
concluded that the main reason for the large difference in BESS capacity
between the multi-energy and all-electric building models is the lack of
thermal flexibility for the latter one. By explicitly modelling the heating
system and thus integrating the flexibility of the TES for the multi-
energy building model, investing in additional electrical flexibility by
a large BESS capacity is not required. Instead, the thermal domain
provides a significant amount of flexibility which can be exploited by
considering the interactions between electricity and heat with each
other.

4.2. Local energy community

For the LEC, the same two modelling approaches were implemented,
namely the multi-energy model and the all-electric model. The BESS
size, the location of the BESS, and the total annualised cost are listed
in Table 4.

Similarly to the building case study, the all-electric community BESS
is oversized by 22.1% compared to the multi-energy model for the time-
varying electricity tariff. For the constant electricity tariff, the BESS
capacity for theall-electric model is oversized by 3.5% compared to
the all-electric LEC model. The design results show that the considered
heating sector interacting with the electricity sector significantly im-
pacts the BESS design capacity. The additionally modelled TES enables
a more flexible HP operation, directly impacting the electricity sector
and the BESS sizing, which can be explained with operational results
in Fig. 5 further below.

1 Charging the BESS represents a power demand and thus positive active
ower values, whereas BESS discharging corresponds to an internal power
eneration and thus negative values.
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Fig. 4. Operational results of the heat, the active power and the reactive power for time-varying electricity tariff. Positive values represent demand and negative values represent
generation.
Table 4
Optimal BESS size, location of the BESS, annualised design and operational cost for
the multi-energy and the all-electric LEC models for the time-varying and the constant
electricity price tariff, respectively.

Tariff LEC model Location BESS size TAC GWI

Varying Multi-energy Bd 5 507 kWh 308.4 ke ∕a 426.8 tCO2
∕a

All-electric Bd 5 619 kWh 333.8 ke ∕a 459.1 tCO2
∕a

Constant Multi-energy Bd 5 548 kWh 310.7 ke ∕a 419.2 tCO2
∕a

All-electric Bd 5 567 kWh 337.1 ke ∕a 460.7 tCO2
∕a

The location for the community BESS is always chosen to be in
uilding 5 (Bd5), which seems to be the optimal location at the head of
he feeder close to the point of common coupling (PCC). Moreover, the
otal annualised cost for the all-electric LEC model are between 8.2%

and 8.5% higher than for the multi-energy model, despite neglecting
the operational cost for the LTDH network in the all-electric model.
urthermore, the annual GWI of the LEC increases by 7.6%–10.1%
8

when not explicitly modelling the heating sector and its coupling to
the electricity sector.

The operational results for the multi-energy community are pre-
sented in Fig. 5 for time-varying and constant electricity tariffs. It can
be seen that for both modelling approaches, the HPs are operated in
a manner that utilises the thermal inertia of the buildings in a similar
pattern. However, for scenario day 317 representing a winter day with
high heat demand and low PV generation, the time-varying electricity
tariff depicted in Fig. 5(a) incentivises the BESS to be charged in the
morning due to its low electricity prices compared to the remaining
hours of this day. If the LEC pays constant electricity prices as shown
in Fig. 5(b), the BESS remains at its lower limit as the PV generation is
smaller than the electricity demand and there is no price incentive.

The impact of the solar irradiance on the BESS sizing is depicted
in Fig. 6, where the same input data was used except for the different
solar irradiance levels. Lower solar irradiance results in smaller BESS
capacities, while high solar irradiance leads to larger BESS capacities
independent of the chosen model and electricity tariff. It can further
be seen that the multi-energy system models result in lower BESS
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Fig. 5. Operational results of heat and active power for the multi-energy LEC model. Positive values represent demand and negative values represent generation. Note that the
values for demand, PV generation and building temperature are aggregated from all buildings within the LEC.

Fig. 6. BESS capacity (top), total annualised costs (middle) and annual global warming impact (GWI) (bottom) depending on the chosen model (multi-energy vs. all-electric) and
electricity tariff (varying vs. constant) for the local energy community.
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compared to their all-electric counterpart for the same tariff. Moreover,
he impact of the annual GWI of the BESS is negligible compared
o the annual GWI of the external power grid. However, the overall
WI decreases with larger BESS sizing as it can be seen for high solar

rradiance, where the GWI and the annualised costs are the lowest.
Our results show that higher solar irradiance leads to a larger

ESS capacity, reduced TAC and reduced annual GWI. Furthermore,
dynamic electricity tariff results in larger BESS sizes compared to
constant tariff for the all-electric system, which aligns with exist-

ng literature [51]. For an increasing solar irradiance, the BESS size
ifference between time-varying and constant tariff increases for the
ll-electric model. However, our findings indicate that when explicitly

modelling the coupled thermal vector, the results vary depending on
the solar irradiance. For low solar irradiance, the optimal BESS size
is identical for both electricity tariffs. For medium solar irradiance, the
time-varying tariff results in a 7.7% reduction of the BESS size, whereas
for high solar irradiance, the optimal BESS size is by 25.9% larger than
for the time-varying tariff.

4.3. Discussion

The results show that representing the heat vector solely from
an electrical point of view and thus neglecting any operational flex-
ibility of the coupled heating components alters the optimal design
outcome of the BESS significantly. Taking into account the increasing
electrification of the heating sector and for instance a future ban on
fossil-fuel-based heating systems in Germany [52,53], the presented
study is highly relevant as many households or LECs might consider
retrofitting their systems with BESS. Our findings highlight the im-
portance of explicitly modelling the thermal vector to avoid BESS
oversizing. As shown in [54] for residential buildings, the thermal
inertia of buildings allows the HPs to operate during hours of solar
irradiance, thus increasing the PV self-consumption. Furthermore, our
results indicate that the thermal flexibility of the building(s) also
plays a pivotal role in the sizing of the retrofitted BESS capacity. The
additional thermal flexibility decreases the need for electrical storage
deployment, thus reducing investment and operational costs.

Including the heating demand for the all-electric models in the load
rofile of the heat pump without any operational flexibility leads to
nfavourable or even unrealistic operating points. During hours of
ow heat demand, the heat pump directly follows the heat demand
nd thus operates at a very low part load, which is economically
nfavourable due to the significantly lower coefficient of performance
f the HP, increases the degradation and might not even be feasible
n reality [55]. By explicitly modelling the heat commodity, including
he part-load behaviour of the HP, these undesirable operating points
an be effectively avoided. The thermal flexibility of the building was
ccounted for by the TES, which was modelled as a lumped parameter
epresenting both the hot water storage and the thermal inertia of
he building. It was combined with the deterministic heat demand
ased on historical data. Alternatively, if measurement data for the heat
emand is unavailable, it could be replaced by an equivalent thermal
esistance to represent the heat losses of the building. For the given
odel, the heat demand implicitly accounts for the heat losses. The

emperature comfort level of each building was chosen to be between
9 ◦C and 22 ◦C. By increasing or decreasing this comfort level, the
vailable thermal flexibility increases or decreases, respectively, which
ight further impact the BESS sizing. It is important to note that our

indings only applies to energy systems with coupled electricity and
eat commodities, which was the case for the given case study with the
lectric HP as the coupling component. If instead a classic gas boiler is
s the heating technology, there would be no influence of the heating
ector on the BESS size.

The presented work focuses on retrofitting an existing MES with a
ESS. However, the underlying approach could be further applied to
10

izing an entire MES, for instance in the context of new building design.
Considering the coupling between energy vectors could significantly
influence the design of all components. For instance, the sizing of the
HP might be impacted by the availability of stored energy in the BESS
or the TES, potentially allowing for a smaller HP size. Additionally,
the sizing and operation of the TES is highly correlated with the BESS,
as an increase in one storage system could decrease the size of the
other. By exploiting the storage systems of both commodities to store
excess energy, the self-sufficiency of the MES can be increased as well.
Furthermore, the size of the PV system might not only be influenced
by the BESS but also indirectly by the heating sector. The electrical
consumption of the heating sector affects the SOC of the BESS, thus
impacting the capability to store access energy from the PV array.
Therefore, an integrated design approach of electricity and heating
components has the potential to reduce both design and operational
costs while enhancing the self-sufficiency of the system.

Furthermore, there are various factors not considered that influence
the BESS sizing and thus the generalisation of the presented findings.
While the influence of different PV irradiation years on BESS sizing
was demonstrated, the effect of different climate types could have a
significant impact on the BESS size as well. Besides affecting solar irra-
diation, different climate types also directly impact energy consumption
patterns. The colder the climate, the higher the heating demand, and
thus potentially the bigger the impact of the coupled heating vector
on the BESS sizing. Furthermore, the occupancy schedule and usage
pattern can also influence the operational energy demand and thus the
BESS sizing. Moreover, the specific characteristics of buildings such
as insulation levels and construction materials affect overall thermal
building inertia, further potentially influencing BESS sizing. Addition-
ally, input data uncertainty, e.g., power demand, heat demand, price
assumptions or PV irradiation, are potential limitations of the presented
planning problem. The presented results and the identified findings are
thus limited to the specific location and the assumed data.

While the GWI associated with the installation of BESS was con-
sidered in this study, it is important to acknowledge that other factors,
such as disposal and recycling processes, also contribute to their overall
environmental impact. Furthermore, for a greenfield design study, the
GWI associated with other component installations such as PV array
or HP must be taken into account as well. However, due to the scope
limitations of our study, these additional aspects were not addressed in
this analysis.

5. Conclusion

This study explores the impact of explicitly modelling the thermal
vector on the optimal sizing of BESS within local multi-energy systems.
A holistic problem formulation was developed, including the nonlinear
representation of the AC power grid. On the one hand, the thermal
vector was explicitly modelled with a quadratic model of the heat
pump, the thermal inertia of the building and the heating network.
On the other hand, the all-electric demand model implicitly included
the electricity consumption of the thermal vector, thus neglecting any
thermal flexibility. These two modelling approaches were applied to
assess the impact of neglecting the thermal vector on the optimal BESS
sizing in two real-world case studies: a single building and a local
energy community. The results highlight the importance of integrated
multi-energy modelling for retrofitting BESS, with several key findings:

• Rather than explicitly modelling the coupled heat vector, in-
tegrating the heat vector within an all-electric demand results
in 9%–41% oversizing for a community BESS, and 176% for a
building BESS with a time-varying tariff. The coupled thermal
building flexibility reduces the need for the BESS to provide
electrical flexibility.

• High solar irradiance increases BESS oversizing for all-electric
demand models compared to integrated multi-energy models, and
further increases the benefit of the time-varying electricity tariff
compared to the constant tariff.
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Fig. A.1. Clustered input data for the building case study with six representative cluster days.
Fig. A.2. Clustered input data for the local energy community case study with four representative cluster days.
• Dynamic tariffs lead to larger BESS sizes for the all-electric system.
Explicitly modelling the thermal vector introduces variability in
BESS sizing, with differences between constant and time-varying
tariffs across varying solar irradiance levels.

• The total annualised costs are reduced by up to 8.5% and the GWI
by up to 8.3% when explicitly modelling the thermal vector, high-
lighting the economic and environmental benefits of integrated
modelling of multi-energy systems.

Future research could investigate how other factors such as different
climate types and user behaviour impact BESS sizing and expand the
presented analysis to further components within multi-energy systems.
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Table A.1
Component parameters for the presented case study, which are chosen based on the
real-world local energy community (LEC). The values of the heat demand and electric
demand are based on historical measurement data of the LEC. Bd represents the
respective building, whereas BB1 represents the upper bus bar to which the central
PV array is connected.

Component Symbol Unit Bd1 Bd2 Bd3 Bd4 Bd5 Bd6 Bd7 BB1

Building 𝐾bd [kWh/◦C] 300 100 600 100 100 600 200 –
Building 𝑇 con,max

hp [◦C] 85 70 85 70 70 70 70 –
Heat pump 𝑄̇max

hp [kWth] 350 90 500 90 110 550 130 –
Heat
demand

𝑄̇max
hd [kWth] 92.8 14.6 134.9 64.8 70.2 265.8 36.5 –

𝑄̇mean
hd [kWth] 38.8 5.3 49.3 23.7 25.7 52.1 15.2 –

Electric
demand

𝑃 max
ed [kWel] 24.9 39.9 45.0 25.4 27.4 197.1 49.7 –

𝑃 mean
ed [kWel] 8.4 34.5 33.0 23.3 14.7 70.2 16.8 –

PV array 𝑃 max
pv [kWp] 80 80 80 100 80 150 80 1000

Appendix. Data input and parameters

Table A.1 presents the component parameters for the case study
based on the real-world LEC. The values for the thermal building inertia
𝐾bd stem from the dwellings and the hot water storage of the respective
building.

Fig. A.1 depicts the six representative cluster days for the building
case study. Fig. A.2 shows the four cluster days for the LEC case study.
Note that the heat and power demand are aggregated over all buildings,
and the active power generation from the PV array is normalised.
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